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ABSTRACT 
 
 

Identification and functional characterization of cataract-specific gene 
expression changes reveals important pathways for human lens 

maintenance, aging and disease.  
 

John R. Hawse IV 
 

 
Human age-related cataract, and opacity of the eye lens, is a multifactorial disease with a 
poorly understood etiology and is the leading cause of world blindness and low vision.  It 
has been estimated that any therapy that could delay the onset of age-related cataract by 
ten years would halve the number of individuals requiring surgery in their lifetime.  To 
accomplish such a feat, it is essential to understand the molecular mechanisms and 
biological pathways associated with this disease.  Here, I describe the global gene 
expression profiles of human age-related cataracts compared to clear lenses, differentiate 
these changes from those that occur with aging of the human lens, cluster the identified 
genes to reveal functional pathways altered in this disease, characterize a family of 
proteins in lens epithelial cells that respond to the presence of toxic metals known to be 
associated with cataract formation and implicate an important role for the methionine 
sulfoxide reductase A enzyme in protecting lens cells against oxidative stress damage.  
The results of the present work indicate that human age-related cataract is associated with 
multiple, previously identified, and novel lens epithelial gene expression changes and 
provide evidence that these changes are likely to be specific for cataract and not due to 
aging of the lens, have identified multiple genes that respond to the presence of insults 
associate with human cataract and implicate an important role for specific genes in the 
maintenance of lens transparency.  Together, these data provide the foundation for some 
of the molecular events associated with human age-related cataract, categorize multiple 
pathways that may play critical roles in the development of cataract and provide evidence 
for essential functions of specific genes in protecting lens cells against oxidative stress.    

 
 

 
 
 
 
 



 iii

 
TABLE of CONTENTS 

 
           Page 
Grant Support�������������������������    iv 
 
Manuscripts Published as a Result of my Work�����������...            v              
 
Preface����..����������������������....    vi 
 
List of Abbreviations���������������������...    ix 
 
Chapter I, Introduction���������������������.             1 
 
Chapter II, Methods and Materials����������������..             9 
  
Chapter III, Decreased ribosomal protein synthesis in cataract�����..             29 
 Introduction����������������������.             31 
 Results������������������������.             34 
 Discussion����������������������...             51 
 
Chapter IV, Gene expression profiles of human cataract��������            55 
 Introduction������������....������.�....�            58 
 Results������������������������.            62 
 Discussion����������������������...            104  
 
Chapter V, Gene expression profiles of aging human lenses������..           113 
 Introduction����������������������.            115 
 Results������������������������.            118 
 Discussion����������������������...            124 
 
Chapter VI, Metal gene induction and content in human lenses�����.           129 
 Introduction����������������������.            131 
 Results������������������������.            136 
 Discussion����������������������...            154 
 
Chapter VII, MsrA protects HLEs against oxidative stress�������.           158 
 Introduction����������������������..           160 
 Results������������������������..           163 
 Discussion�����������������������            176 
 
Chapter VIII, Conclusions�������������������...            181     
  
 
References��������������������������            185    



 iv

 
Grant Support 

  
 
 

This work was supported by an award from the National Eye Institute  
EY13022 (Marc Kantorow). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v

 

Manuscripts Published as a Result  
of my Work 

 
1. Weiyan Zhang, John Hawse, Quingling Huang, Nancy Sheets, Kevin Miller, 

Joseph Horwitz and Marc Kantorow.  Decreased expression of ribosomal proteins 
in human age-related cataract.  Investigative Ophthalmology and Visual Science.  
2002, 43, 198-204. 

 
2. John R. Hawse, Jonathan R. Cumming, Brian Oppermann, Nancy L. Sheets, 

Venkat N. Reddy and Marc Kantorow.  Activation of metallothioneins and alpha-
crystallin/sHSPs in human lens epithelial cells by specific metals and the metal 
content of aging clear human lenses.  Investigative Ophthalmology and Visual 
Science.  2003, 44, 672-679. 

 
3. John R. Hawse, James F. Hejtmancik, Quingling Huang, Nancy L. Sheets, 

Douglas A. Hosack, Richard A. Lempicki, Joseph Horwitz, Marc Kantorow.  
Identification and functional clustering of global gene expression differences 
between human age-related cataract and clear lenses.  Molecular Vision.  2003, 9, 
515-537. 

 
4. John R. Hawse, Marc Kantorow.  Gene expression profiles of human age-related 

cataracts.  (EER invited review).  2004.  (Submitted). 
 
5. John R. Hawse, Marc Kantorow, Tracy L. Cowell, Sonia Benhamed, Gresin O. 

Pizarro, Venkat N. Reddy, J. F. Hejtmancik.  Methionine sulfoxide reductase A 
protects human eye lens cells against oxidative stress damage.  Proceeding of the 
National Academy of Science.  2004.  (Submitted). 

 
6. John R. Hawse, Candida Deamicus-Tress, Tracy Cowell, Gresin Pizarro and 

Marc Kantorow.  A genomic level analysis of the differentiation process of 
human lens epithelial cells to fiber cells.  Investigative Ophthalmology and Visual 
Science.  2004.  (In Preparation). 

 

 
 
 
 
 



 vi

 
Preface 

 
 

 It seems like only yesterday.  I was a naive 21 year old walking into an unfamiliar 

yet intriguing environment that would offer me the opportunity of a lifetime, and one that 

would turn the direction of my life and career upside down.  I have been interested in 

science for as long as I can remember, always asking for those �do it yourself� science 

kits that each of us had as a child, and following my dad around his high school 

chemistry lab on the weekends helping him prepare for the next weeks lab.  I enrolled in 

every science class that would fit into my schedule throughout my primary education and 

began college destined to become a biology teacher.  One winter day during my junior 

year I learned of a job opening for an undergraduate research assistantship position in 

Marc Kantorow�s lab.  I thought that this would be a good opportunity to make a little 

money and see what life as a scientist was all about.  I got the job, and my role in the lab 

began as a dishwasher and solution maker, but would quickly evolve into much more as 

he assisted me in developing my own research project.  I was instantly hooked, and what 

was once intended to be a part-time job blossomed into a potential career as a scientist.  

 All was not easy for me during my years as a graduate student.  I was instantly 

thrown into the middle of �professionalism� lectures and simply could not understand 

why it was not all right to work crossword puzzles throughout the day or go on lunch 

breaks as soon as the clock struck noon.  There was also an overwhelming and seemingly 

insurmountable amount of information to be learned and I began to wonder if this was 

really the lifestyle for me.  At times I was forced to sacrifice hunting trips, athletic events 

and my personal time on the weekends for long nights in the lab and quality time in front 
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of the computer attempting to write manuscripts.  I also experienced a move half way 

across the country during my final year and would have to scramble to smooth out my 

status as a graduate student at WVU.  However, the tough times were minor in light of 

the fun.  I have had the opportunity to travel around the country and meet some of the 

best scientists in the field, and if given the chance to do it all over again, I would not 

change a thing.  

  There have been many gifts and opportunities to come my way over the past 

three years but none have been as wonderful as the people that comprise the scientific 

community, whom I have had the opportunity to meet and interact with throughout my 

days as a graduate student.  There are too many individuals to list so I will simply give 

my humble thanks and reflect that the last three years of my life would not have been 

possible, or as successful and enjoyable without them.  These include Dr. Marc 

Kantorow, who has provided me with tremendous support, both as an undergraduate and 

throughout my graduate career, in the form of knowledge, guidance, enthusiasm and a 

comfortable and enjoyable place to work, who has taught me the many intricacies of 

becoming a successful teacher, advisor and researcher and who has instilled in me a 

general passion for science.  Special mention should also be given to Dr. Jonathan 

Cumming, Dr. Fielding Hejtmancik, Dr. Ignacio Rodriguez, Dr. Richard Thomas and Dr. 

Mark Walbridge who have all provided me with expertise in the many areas of my 

research, who have supported me both as a friend and as an advisor throughout my 

graduate studies and who have enlightened me and have opened my eyes to the many 

aspects of biology ranging from the environment that we live in to the genetic material 

that defines our person.  I must also thank the many graduate students and staff members 



 viii

that have become great friends and colleagues during my years at WVU.  In particular, 

Frank Secreto, Nancy Sheets, Brian Oppermann, Katrina Klugh, Charley Kelly, Justin 

Haught and Charla Secreto who have all provided me with enormous insight, support, 

encouragement and, importantly, humor, during the many late nights in the lab and out on 

the town.  I also thank Larry Arbogast, my high school Biology teacher, who was 

instrumental in providing me with a solid foundation in science, was a key factor in 

extracting and illuminating my curiosity for the field and who continues to support and 

show interest in my work.  Most importantly, I thank my parents who are responsible for 

the person I am today, who have constantly supported me and my decisions throughout 

life, both in strenuous and trying times as well as in favorable and exciting times and who 

have given me the tools, and have exemplified the way, to live an enjoyable, peaceful and 

productive life.  

 Finally I would like to thank Mark Twain for his ongoing inspiration and would 

like to accentuate my appreciation of Mr. Twain and his scientific acumen with the 

following quote:           

�In the space of one hundred and seventy-six years the Lower Mississippi has shortened 
itself two hundred and forty-two miles.  That is an average of a trifle over one mile and a 
third per year.  Therefore, any calm person, who is not blind or idiotic, can see that in the 
Old Oolitic Silurian Period, just a million years ago next November, the Lower 
Mississippi River was upwards of one million three hundred thousand miles long, and 
stuck out over the Gulf of Mexico like a fishing-rod.  And by the same token any person 
can see that seven hundred and forty-two years from now the Lower Mississippi will be 
only a mile and three-quarters long, and Cairo and New Orleans will have joined their 
streets together, and be plodding comfortably along under a single mayor and a mutual 
board of aldermen.  There is something fascinating about science.  One gets such 
wholesale returns of conjecture out of such a trifling investment of fact.� 
- Mark Twain, Life on the Mississippi  

Herein follows my wholesale return of conjecture. 
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Chapter I 

INTRODUCTION 

 

The Biology of the Lens. 

 

The role of the eye lens is to focus incoming light on the retina where visual 

information is processed and transmitted to the brain.  In order for the lens to carry out 

this process it has evolved an exquisite set of proteins that protect the lens and preserve 

its transparent function.  The lens is an interesting organ to study since it is composed of 

only 2 cell types, grows throughout life and contains some of the oldest cells in the body 

and therefore presents a unique model for examining how cumulative environmental 

insults and aging may impact biological systems.  For this reason, the lens has classically 

served as a model for diverse biological processes including stress biology, protein 

biochemistry, development and aging.  

The lens consists of a single layer of quiescent cuboidal epithelial cells on the 

anterior surface of the lens covering concentric layers of elongated and terminally 

differentiated fiber cells.  The entire organ is encompassed by a basement membrane 

known as the lens capsule which is secreted by the epithelial cells.  The lens grows 

throughout life as the peripheral epithelial cells eventually give rise to new fiber cells.  

The fiber cells nearest the epithelium makeup the lens cortex while the fiber cells in the 

center of the lens are referred to as the lens nucleus and are some of the oldest cells in the 

body.  During differentiation from epithelia to fibers, lens cells elongate, produce large 
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amounts of crystallin proteins and lose their organelles and therefore rely solely on the 

epithelium for future support and protection.  

Developmentally, the lens forms from an invagination of the neural placode 

which eventually pinches off to create a spherical lens vesicle (Phelps Brown 1996).  

Formation of the lens vesicle is rapidly followed by elongation of the cells of its posterior 

wall which are destined to become the primary lens fibers.  Additional layers of 

secondary fiber cells are created at the lens equator as a result of cell division, separating 

the primary fiber cell mass from the epithelium (Phelps Brown 1996).  These same 

primary fiber cells occupy the center of the lens throughout life and are referred to as the 

lens nucleus.  The specific cell types and regions of the lens are represented pictorially 

below.  

 

   

Chicken embryo lens depicting the different regions of the lens.  This 
diagram was adapted from Beebe D, Vasiliev O, Guo J, Shui YB, and  
Bassnett S.  Changes in adhesion complexes define stages in the differentiation 
of lens fiber cells.  IOVS March 2001, Vol. 42, No. 3: 727-734. 
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The lens is covered by an unusually thick basal lamina, referred to as the lens 

capsule, which is secreted by the lens epithelium during development (Parmigiani and 

McAvoy 1991).  The capsule represents the thickest basement membrane in the body and 

is freely permeable to water, ions and other small molecules but offers a barrier to 

proteins larger than approximately 67 kDa (Fisher 1969).   

The lens epithelium is composed of cuboidal cells that form a simple epithelium 

covering the anterior portion of the lens.  Approximately 500,000 cells make up the adult 

human lens epithelium (Young ) and these cells possess large nuclei and a moderate 

number of organelles and are responsible for the majority of transcriptional activity in the 

lens (Phelps Brown 1996).  The epithelial cells are connected to the fiber cells through 

gap junctions and there is no significant barrier to extracellular flow between lens 

epithelial cells (Goodenough et al 1980; Rae and Stacey 1979).  These gap junctions 

likely allow the lens epithelium to respond to changes in the fiber cells through altered 

gene expression.  Very few mitosis events occur in the central region of the lens 

epithelium but are more frequent in the germinative zone.  This area of the epithelium is 

composed of highly ordered meridional rows of cells that differentiate into secondary 

fiber cells.   

Fiber cells undergo a process of terminal differentiation during which they lose 

their nuclei and all other organelles.  Superficial lens fiber cells contain sparse organelles 

that are eventually lost from the deep cortex and the lens nucleus.  Lens fibers are ribbon-

shaped cells that are hexagonal in cross-section and are joined together by both ball and 

socket (Phelps Brown 1996) and tongue and groove joints (Kuwabara 1975).    
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Age-Related Cataract. 

 

Age-related cataract is the major disease of the lens and is defined as any opacity 

of the lens that results in light scattering.  Age-related cataract is the major cause of world 

blindness (Congdon et al., 2003), is the most commonly performed surgical procedure in 

people over 65 and is the leading cause of morbidity and functional impairment in the 

elderly.  Surgery is the only know treatment for this disease and cataract surgery 

currently accounts for approximately 12% of the entire Medicare budget (Stark et al., 

1989).  With the average age of the US population increasing, cataract is, and will 

continue to be, a major economic and quality of life concern.  Despite its importance, 

age-related cataract is a multifactorial disease with a poorly understood etiology.  Among 

the many factors that can lead to cataract, oxidative stress coupled to UV-light exposure 

and exposure to ionizing radiation are believed to play major roles (Spector, 1984)    

A key player in lens maintenance and defense is the lens epithelium which is the 

first part of the lens exposed to environmental insults.  The lens epithelium also contains 

the highest activities of enzymes and transport systems in the lens (Reddan JR. 1982; 

Reddy 1971b; Spector 1982a) and damage to this portion of the lens and these systems 

has been shown to be associated with cataract formation (Harding JJ 1984; Phelps Brown 

1996; Spector 1995).  These properties of the lens epithelium suggest that it is likely to 

have evolved mechanisms to defend itself against environmental stress.  Repeated 

exposure of the lens to multiple stresses is known to cause cataract formation and alter 

the gene expression profiles of the lens epithelium.   
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Oxidative Stress and Age-Related Cataract. 

 

 One major insult to the lens epithelium is oxidative stress which is known to be 

associated with numerous age-related diseases including Alzheimer�s and Parkinson�s 

disease, age-related macular degeneration and age-onset cataract (Beatty et al 2000).  

Oxidative stress occurs when the level of reactive oxygen species and other free radicals 

exceeds the ability of a cell to respond through antioxidant defense systems and 

ultimately leads to protein modification and degradation, DNA and mitochondrial 

damage and eventual cell death (Fukagawa et al 2000; Rosen et al 2001).  The lens is 

especially prone to oxidative damage since the fiber cells of the lens are not renewed and 

therefore must last a lifetime.  Accumulated damage to these fiber cells is likely to result 

in protein degradation, aggregation and ultimately cataract.    

 A number of epidemiologic and experimental studies support the idea that 

ultraviolet light plays a role in oxidative stress and cataract formation.  Interactions of 

UV-light with ascorbate and other molecules present in the aqueous humor result in the 

production of H2O2.  Organ culture experiments have shown that acute oxidative stress 

induced by H2O2 treatment is capable of irreversible damage to the lens epithelium 

resulting in cell death and cataract (Spector 1995).  UV irradiation of rat lenses has been 

shown to cause photochemical alterations of tryptophan residues in lens proteins, 

ultraviolet absorption bands attributed to photo-oxidation products of lens proteins and 

cross-linking of polypeptides in lens proteins (Borkman 1984).  Additional studies have 

shown that UV photons interact with proteins in epithelial cell membranes damaging the 

ion pumps and channels (Hightower 1994).  Accumulated damage to these pumps and 
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channels over time results in the loss of homeostatic control of ions (Hightower 1994).  

This loss of homeostasis results in damage to the crystallin proteins in the underlying 

fiber cells leading to opacification of the lens (Hightower 1994).  

 

Toxic Metals and Age-Related Cataract. 

 

In addition to UV-light, toxic metals such as iron, copper, cadmium, lead, 

aluminum and others have been demonstrated to be associated with cataract formation.  

Human exposure to these metals arises from wide-spread sources including cigarette 

smoke, air pollution, leaching of landfills, industrial waste, emissions from fossil fuels, 

fertilizers and corrosion of plumbing (Artic Monitoring and Assessment Program 

(AMAP). 2000; Ruffett et al 1992).  Indeed, increased cadmium levels have been 

reported in cataract versus clear human lenses (Ramakrishnan et al 1995) and iron and 

copper participate in Fenton-type reactions which are known to be associated with 

oxidative stress and cataract (Phelps Brown 1996).  Defects associated with metal 

transport systems in the lens, including hyperferritinemia (Girelli et al 1995), Wilson�s 

disease and Menkes disease (Cuthbert 1998) result in the formation of specific types of 

human cataract.   

 

Protective Systems in the Lens. 

 

 To combat damage resulting from oxidative stress, UV-light and toxic metal 

exposure, the lens has evolved numerous protective systems making it an excellent model 
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for studying the biology of aging and the molecular mechanisms associated with these 

insults and this disease.  The lens contains high levels of reduced glutathione (Giblin 

2000), abundant antioxidant enzymes (Phelps Brown 1996) and the chaperone-like 

functions of the crystallins (Horwitz 1992) which are likely to play pivotal roles in 

protecting the lens against damage associated with these stresses.  Previous work has 

provided evidence that the human lens epithelium is capable of responding to the 

presence of multiple insults and cataract through the altered expression of many genes 

including metallothionein IIa (Oppermann et al 2001a), thioltransferase (Xing and Lou 

2002), catalase (Reddan et al 1996), glutathione peroxidase (Spector et al 2001) and 

multiple glutathione S-transferases (Phelps Brown 1996).  These data provide evidence 

that the lens is capable of dynamic responses to environmental insults such as oxidative 

stress, toxic metals and UV-light exposure.   

 

This Dissertation. 

 

 Age-related cataracts have been linked to many interrelated environmental, 

physiological and genetic components (Harding JJ 1984; Hightower 1995; Phelps Brown 

1996; Spector 1982a; Spector 1984; Spector 1995) and it is therefore unlikely that any 

one study will identify a comprehensive therapy for the treatment of this disease.  

However, it has been estimated that a 10 year delay in the onset of age-related cataract 

would halve the number of people requiring cataract surgery in their lifetime, 

dramatically increase the quality of life and significantly decrease the cost of health care 

(Kupfer 1994).  In light of the elaborate and interactive mechanisms involved in lens 
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defense against insults associated with cataract and the limited knowledge of the gene 

expression changes that occur in the lens upon cataract formation, I sought to define 

those genes and their associated pathways that are altered in the presence of cataract and 

to begin defining the functional roles of these systems in the lens.  Understanding the 

functions of these genes will aid in the development of therapies to delay or possibly 

prevent cataract formation. 

 Specifically I have established the groundwork for the molecular events 

accompanying the presence of cataract and aging of the human lens, have identified 

specific genes induced by the presence of metals in lens epithelial cells that are likely to 

protect against the toxic effects of heavy metal insult and have provided evidence for a 

potential role of MsrA in defending lens cells against oxidative stress through repair of 

oxidized methionine residues.  The work leading to these conclusions is specifically 

described in a segmented format below. 
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Chapter II 

METHODS and MATERIALS 

 

Isolation of RNA from human lenses for differential display.   

 

Clear human lenses were received on ice within 24 hours post-mortem.  Lenses 

were microscopically examined for any sign of opacity.  Those exhibiting signs of 

opacity were excluded from the present study.  For the differential display and semi-

quantitative RT-PCR procedures, 6-8mm of central epithelia from clear lenses were 

dissected and contaminating fiber cells removed using a dissecting microscope 

(Straatsma et al 1984).  Age-related cataract epithelia (4-6mm of central epithelia) were 

obtained within minutes after surgery and contaminating fibers removed identically 

(Straatsma, Horwitz, Takemoto, Lightfoot, and Ding 1984).  For the spatial analysis 

studies, whole normal lenses were dissected into central epithelia (4-6mm), peripheral 

epithelia (the outermost 2-3mm), whole fibers (the rest of lens minus the epithelium and 

capsule) and cortical fibers (2-3mm excluding the nuclear fibers).  Normal epithelia 

averaged 60 years old and were 60% male, while cataract epithelia averaged 71 years old 

and were 45% male.  The cataract epithelia in this study represent the normal population 

receiving cataract surgery at the Jules Stein Eye Institute, Los Angeles, CA and were 

obtained and classified by the same surgeon using a modified version of the LOCSIII 

grading system.  The cataracts used in this study were approximately 70% mixed, 20% 

nuclear, 5% cortical and 2% posterior sub-capsular.  With the exception of cataract-type, 
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age and sex no further identifying information was available for individual lenses.  Total 

RNA was prepared from all samples using the RNeasy kit as specified by the 

manufacturer (Qiagen,Valencia, CA)  and quantified as previously described (Kantorow 

et al 1998a).  For RT-PCR-differential display, RNA samples were treated with RNase-

free DNaseI to remove possible DNA contamination (Sambrook J 1989). 

 

Reverse transcriptase-PCR-differential display.   

 

Differential display reactions were performed in duplicate to reduce the potential 

for artifacts.  First-strand cDNA synthesis: Duplicate samples of 200ng cataractous and 

normal RNA were subjected to reverse transcription using 0.2µM of an anchored primer 

(AP1) of sequence 5�-ACGACTCACTATAGGGCTTTTTTTTTTTTAA-3� containing 

the T7 promoter sequence (underlined), a T12 anchoring sequence, and two anchoring 

bases.  First-strand synthesis was performed by incubation at 25°C for 10 minutes, 42°C 

for 60 minutes, and 70°C for 15 minutes, in the presence of 25µM each 

deoxyribonucleoside triphosphates, 10mM DTT, 20U RNasin (Promega, Madison, WI) 

and 40U reverse transcriptase (Superscript II; GIBCO-BRL, Gaithersburg, MD) in a 

volume of 20µl reverse transcription buffer (50mM Tris, pH 8.3, 6mM MgCl2, 10mM 

KCl).   

Amplification of Double-Stranded cDNA Fragments:  Double-stranded cDNAs were 

generated by PCR using two different primer sets.  Both reactions used 0.2µM of the 

anchored first-strand synthesis primer (above).  Separate reactions employed either 

0.2µM of arbitrary annealing primer one (AR1; 5�-
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ACAATTTCACACAGGACGACTCCAAG-3�) or arbitrarily annealing primer 2 (AR2; 

5�-ACAATTTCACACAGGAGCTAGCATGG-3�).  Both primers contain the M13 

reverse sequence (underlined).  PCR was performed with 1U Taq polymerase (AmpliTaq; 

PerkinElmer, Norwalk, CT) in the presence of 2.5µCi [α-33P]-deoxyadenosine 

triphosphate (1000-3000 Ci/mmol; New England Nuclear-Dupont, Boston, MA), 1.5mM 

MgCl2, and 100µM deoxynucleoside triphosphates, in a reaction volume of 20µl.  PCR 

cycles were:  1 PCR cycle at 95°C for 2 minutes; 4 PCR cycles at 92°C for 15 seconds, 

46°C for 30 seconds and 72°C for 2 minutes; 25 PCR cycles at 92°C for 15 seconds, 

60°C for 30 seconds, 72°C for 2 minutes; and 1 PCR cycle at 72°C for 7 minutes.  After 

amplification, [α-33P]-labeled cDNA fragments were separated by electrophoresis on 

4.5% polyacrylamide, 8M urea gels and visualized by autoradiography.   

Re-amplification of Differentially Displayed Bands:  Bands of differing intensity, and 

two unchanged bands (as controls), between the cataract and the normal samples were 

excised from the gel and the resultant gel slices were directly subjected to PCR.  cDNAs 

were bi-directionally amplified with 0.2µM each full-length T7 primer (5�-

GTAATACGACTCACTATAGGGC-3�) and M13 reverse (-48)sequencing primers    

(5�-AGCGGATAACAATTTCACACAGGA-3�).  The PCR conditions and cycles used 

in these procedures were identical with those described for amplification of double-

stranded cDNA fragments, except that [α-33P]-deoxyadenosine triphosphate was omitted 

from the reaction mixture.  Products were separated by electrophoresis on 1.2% agarose 

gels and visualized by ethidium bromide staining. 
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Cloning and Sequence Analysis of Differentially Displayed cDNAs.   

 

Re-amplified differentially displayed bands were analyzed by electrophoresis on 

1.2% agarose gels.  The products were cloned into the TOPO TA cloning vector 

(Invitrogen, San Diego, CA), according to manufacturer�s instructions.  Cloned 

differentially displayed products were sequenced by fluorescent dye terminator cycle 

sequencing as specified by the manufacturer (Perkin-Elmer Applied Biosystems, 

Warrington, UK), using a sequencing primer (5�-GCTCGGATCCACTAGTAACGG-3�) 

complementary to the vector (TOPO TA) SP6 sequence.  Reactions were run and 

sequences analyzed on an Applied Biosystems model 373A DNA sequencer.  Sequences 

were further analyzed using the BLAST algorithm with the GenBank data base and 

sequence alignments were performed using the MegAlign program contained in the 

Lasergene software package (DNASTAR, Madison,WI) to determine the genes 

represented by the differentially displayed bands. 

 

Semi-quantitative RT-PCR confirmation of differentially displayed bands.   

 

Semi-quantitative RT-PCR was performed by modification of established 

procedures (Kantorow, Horwitz, and Carper 1998a; Sambrook J 1989).  RNA from 

individual samples was examined using the one-step system according to the 

manufacturer (GIBCO-BRL, Gaithersburg, MD).  Primers were designed to cross intron-

exon boundaries.  The primer concentration of 200nM used in these experiments was 

chosen to ensure that the amount of primers would not be limiting.  Control reactions 
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used primers specific for human β-actin and GAPDH.  PCR cycling parameters (20-25 

cycles) were chosen to ensure linear product formation over the amounts of RNA and 

other reagents described.  The sequences of the gene-specific primers used to amplify the 

β-actin, GAPDH, L21, gp130, L15, L13a, L7a, eIF4E and ΕF1α1 transcripts along with 

their corresponding GenBank accession numbers and annealing temperatures are shown 

in Table 1 in chapter III.  Products were separated on 1.2% agarose gels and visualized by 

ethidium bromide staining.  Reaction products were sequenced to ensure they represented 

the authentic transcripts.  Where indicated 1uCi of  [1000-3000mCi/mmol, [α−33P]-

deoxyadenosine triphosphate was added to each RT-PCR reaction and incorporated 

radioactivity was monitored by scintillation counting of excised RT-PCR products. 

 

Tissue collection and RNA preparation for oligonucleotide microarray 

hybridization.   

 

Central lens epithelial tags (2-3 mm2) were obtained from patients undergoing 

cataract surgery at the Jules Stein Eye Institute, UCLA School of Medicine.  The 

cataracts are representative of the entire population of patients undergoing cataract 

surgery and were obtained and classified by the same surgeon, according to a modified 

version of the Lens Opacities Classification Scale (LOCS)-III grading system.  The 

cataracts used in this study were approximately 70% mixed, 20% nuclear, 5% cortical 

and 2% posterior sub-capsular.  With the exception of cataract-type, age and sex, no 

further identifying information was available for individual lenses.  Clear whole human 

lenses were obtained from organ donors within 24 hours post-mortem from the Lions Eye 
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Bank of Oregon and the West Virginia Eye Bank.  Whole lenses were microscopically 

examined for opacities and those lenses exhibiting opacity were discarded from the 

present study.  Clear lenses were microdissected for central epithelium (6-8 mm2) and 

contaminating fiber cells were removed.  A total of 106 cataracts (average age 71.2 years) 

and 10 clear lens epithelia (average age 64.2 years) were used to obtain sufficient 

amounts of RNA (2-5 µg) for the microarray study.  An additional 50 cataracts (average 

age 70.8 years) and 10 clear lens epithelia (average age 63.3 years) were used for the 

secondary semi-quantitative RT-PCR confirmation studies.  Another 50 cataracts 

(average age 68.7 years) and 10 clear lens epithelia (average age 57.0 years) were used 

for the control and tertiary semi-quantitative RT-PCR confirmation studies.  Total RNA 

was isolated from these samples using the Trizol method. 

 For gene expression differences between young and old lens epithelia, total RNA 

was isolated from 10 pooled young lens epithelia, average age 32.3 years, and 10 pooled 

old lens epithelia, average age 64.2 years.  All lenses were collected from the Lion�s Eye 

Bank of Oregon and the West Virginia Eye Bank, examined to be free of any opacity and 

microdissected to separate the lens epithelium from the underlying fiber cells.        

 

Microarray procedure and analysis.   

 

The quality and quantity of RNA obtained from the cataract and clear lens 

epithelial tags was determined using a Bioanalyzer 2100 (Agilent Technologies) 

according to the manufacturers protocol.  Briefly, a small amount of RNA from each 

sample was loaded on a microgel, electrophoresed, scanned and analyzed for the quantity 
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and integrity of the 18s and 28s ribosomal RNA bands to ensure that the same amount of 

RNA was examined for both the cataract and clear lens samples.   

First and second strand cDNAs were synthesized from 2-5 µg of total RNA using 

the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen, Gaithersburg, MD) 

and the oligo-dT24-T7 primer (5�-GGCCAGTGAATTGTAATACGACTCACTAT- 

AGGGAGGCGG-3�) according to the manufacturer�s instructions.  cRNA was 

synthesized and labeled with biotinylated UTP and CTP by in vitro transcription using 

the T7 promoter coupled double-stranded cDNA as a template and the T7 RNA 

Transcript Labeling Kit (ENZO Diagnostics Inc.).  Briefly, double-stranded cDNAs 

synthesized from the previous steps were washed twice with 70% ethanol and 

resuspended in 22 µl of RNase-free H2O.  The cDNA was incubated with 4 µl each of 

10X Reaction Buffer, Biotin Labeled Ribonucleotides, DTT, RNase Inhibitor Mix and 

2µl of 20X T7 RNA Polymerase for 5 hours at 37°C.  The labeled cRNA was separated 

from unincorporated ribonucleotides by passing through a CHROMA SPIN-100 column 

(Clontech) and precipitated at -20°C for 1 hour to overnight.   

 The cRNA pellet was resuspended in 10 µl of RNase-free H2O and 10 µg was 

fragmented by heat and ion-mediated hydrolysis at 95°C for 35 minutes in 200 µM Tris-

acetate, pH 8.1, 500 mM KOAc, 150 mM MgOAc.  The fragmented cRNA was 

hybridized for 16 hours at 45°C to HG_U133A oligonucleotide arrays (Affymetrix) 

containing 22,283 probe sets representing 22,215 gene or extended sequence tag (EST) 

sequences.  Arrays were washed at 25°C with 6X SSPE (0.9 M NaCl, 60 mM NaH2PO4, 

6 mM EDTA and 0.01% Tween-20) followed by a stringent wash at 50°C with (100 mM 

MES, 0.1 M [Na+],  and 0.01% Tween-20).  The arrays were then stained with 
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phycoerythrein-conjugated streptavidin (Molecular Probes) and the fluorescence 

intensities were determined using a laser confocal scanner (Hewlett-Packard).   

The scanned images were analyzed using Microarray Suite 5.0 software 

(Affymetrix), following user guidelines.  Briefly, background signal intensities were 

calculated and used to determine if the signal intensity of an individual gene was 

statistically greater than the background intensity value.  The signal intensity for each 

gene was calculated as the average intensity difference, represented by [∑(PM-

MM)/(number of probe pairs)], where PM and MM denote perfect-match and mismatch 

probes respectively.  Each reported gene value represents the average signal intensity of 

10 separately hybridized gene signatures.  Any gene whose MM value was saturated or 

fell within tau (τ) distance of the PM value was excluded from the analysis.  Tau is a 

parameter used in performing the One-Sided Wilcoxon�s Signed Rank test for the 

detection call and represents a threshold that the discrimination score for a probe set must 

exceed in order for a gene to be regarded as being present in the sample.  Each gene was 

then assigned a call of Present (P), meaning that its intensity value is statistically greater 

than that of the background level and/or falls outside of the calculated τ distance, or 

Absent (A) meaning that its intensity value is not statistically greater than that of the 

background level and/or falls within the calculated τ distance.  All of the genes described 

in these studies are rated as present in at least one, if not both, of the cataract and clear 

lens samples or the young and old lens epithelia samples.  Any gene that was determined 

to be absent in both of the compared samples was eliminated from these studies. 

 The microarray data were normalized using the Microarray Suite 5.0 software 

(Affymetrix) by multiplying the output of the experimental array by a Normalization 
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Factor so that its average intensity was the same as that of the baseline array.  The 

Microarray Suite 5.0 software also requires scaling, in which the output of any array is 

multiplied by a scaling factor to make its average intensity equal to a defined target 

intensity.  For these studies a standard target intensity of 250 was used. 

 

Semi-quantitative RT-PCR confirmations of differentially expressed genes by 

microarray hybridization.   

 

Indicated genes were selected for use in semi-quantitative RT-PCR confirmations 

of the hybridization results for the cataract and clear lens epithelial samples.  Gene-

specific primers were designed using the BLAST program and GenBank database 

(http://www.nlm.nih.ncbi.gov/, National Center for Biotechnology Information, 

Bethesda, MD).  All primers were designed to cross intron/exon boundaries.  The primer 

sequences, GenBank accession numbers, annealing temperatures, product lengths and 

PCR cycle numbers for all gene-specific primers used in the cataract and clear lens study 

are indicated in Table 1 in chapter IV.  Semi-quantitative RT-PCR was performed using 

50 ng of RNA with a commercial RT-PCR system used in accordance with the 

manufacturer�s protocol (One-Step; Invitrogen, Gaithersburg, MD).  Control genes were 

also examined to provide further confidence in the data and to show that the PCR 

reactions used were within the linear range of PCR cycles.  Products were separated by 

gel electrophoresis on 1.5% agarose gels and visualized by ethidium bromide staining.  

Product formation for indicated genes was linear over all of the PCR cycles used.  All 

PCR products were sequenced to ensure product authenticity.  All gels were scanned and 
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the % adjusted volume intensities of all of the RT-PCR products were determined using a 

Biorad gel documentation system (Biorad).  These values were used to calculate the 

approximate fold changes of the selected genes in the RNA samples analyzed.   

 

Functional clustering and over-representation analysis of differentially expressed 

genes.   

 

Genes identified to be differentially expressed by 2-fold or greater according to 

the microarray analysis were analyzed for significant functional clusters of genes using 

the EASE bioinformatics software package (http://david.niaid.nih.gov/david/ease.htm).  

This software package was used to rank functional clusters by statistical over-

representation of individual genes in specific categories relative to all genes in the same 

category on the microarray.  The functional clusters used by EASE were derived from the 

classification systems of the Gene Ontology (http://www.geneontology.org/), Proteome�s 

�At A Glance� (http://www.incyte.com/sequence/proteome/databases/HumanPSD.shtml), 

SwissProt keywords (http://us.expasy.org/cgi-bin/keywlist.pl) and Interpro protein 

domains (http://www.ebi.ac.uk/interpro/). 

 

Human lens epithelial cell culture.   

Human lens epithelial cells (HLEs) (SRA01/04) (Ibaraki et al 1998) were grown 

and cultured in Dulbecco�s modified Eagle�s medium supplemented with 15% fetal 

bovine serum, gentimycin (50 units/ml, Invitrogen, Gaithersburg, MD) and PSN 
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(penicillin-streptomycin-neomycin) antibiotic mix (50units/ml, Invitrogen, Gaithersburg, 

MD), at 36.5 °C in the presence of 5% CO2.   

The methods for establishing primary cultures of human lens epithelium have 

been described previously (Arita et al 1988).  Briefly, pieces of capsule and epithelium 

obtained from infants who underwent surgery for retinopathy of prematurity were washed 

once with Ca+2 and Mg+2 free phosphate buffered saline and collected with a micro 

suction pipette.  Small fragments of capsule (1-2 mm2) with epithelial cells attached were 

placed in a 60mm culture dish in Dulbecco�s modified Eagle�s medium supplemented 

with 20% fetal calf serum (Falcon; Becton-Dickenson, Oxnard, CA, USA) as explants 

until a confluent monolayer was formed in approximately two weeks.   

 Cells from explant-cultures were dissociated with trypsin-EDTA solution 

(Invitrogen, Grand Island, NY, USA) and collected by centrifugation.  They were 

subcultured in the initial medium at 36.5° C in a humidified atmosphere with 5% CO2.  

The procedure was repeated for additional subcultures. 

 

Metal treatments.   

Cells were exposed to the indicated concentrations of CdCl2, CuCl2 and ZnCl2 

dissolved in water as previously described (Foster et al 1988) and optimal induction 

conditions were determined.  At indicated times, cells were washed with PBS and total 

RNA was isolated by Trizol (Invitrogen, Gaithersburg, MD) extraction as specified by 

the manufacturer.  Cell viability in response to metal treatment was assessed by trypan 
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blue exclusion (Ausubel I 1998).  Cell viability is expressed as the standard deviation for 

three separate cell populations treated identically.  

 

Semi-quantitative RT-PCR examination of gene induction by metals.   

 

Gene-specific primers were designed using the BLAST program and GenBank 

data base (National Library of Medicine, Bethesda, Maryland).  Primer sequences, 

Genbank accession numbers, annealing temperatures and product lengths for all gene-

specific primers used in this study are indicated in Table 1 in chapter VI.  RT-PCR was 

performed with 100 ng of RNA using the One-Step RT-PCR system according to the 

manufacturer (Invitrogen, Gaithersburg, MD).  Products were separated by gel 

electrophoresis on 1.5% agarose gels and visualized by ethidium bromide staining.  

Products were sequenced to ensure specificity.  Product formation for indicated genes 

was linear over 20 to 30 PCR cycles. 

Quantitative mimic RT-PCR.   

PCR mimics, identical in sequence to the MTIIa and MTIg cDNA sequences with 

the exception of a 138 bp internal deletion (bps +18 to +155 from the start of translation) 

for the MTIIa mimic and a 118 bp internal deletion (bps +18 to +135 from the start of 

translation) for the MTIg mimic, were synthesized and used to compete with endogenous 

MT cDNAs.  Indicated transcripts were reverse-transcribed and amplified in the presence 

or absence of the PCR mimics using the One Step RT-PCR system as recommended by 

the manufacturer (Invitrogen, Gaithersburg, MD) and the same primers and conditions 

described for RT-PCR above.  The MT PCR mimics contain the same primer binding 
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sites and sequences as the endogenous MT mRNAs except for the indicated deletions.  

The amount of MTIIa or MTIg mimic required to equally compete with a fixed amount 

of total RNA is proportional to the amount of transcript present.  Increasing amounts (0.1 

to 500 pg) of mimic DNA template competed with a constant amount of RNA (300 ng) in 

the presence or absence of 1.0µCi of α32P-CTP (250µCi/mmol) (Amersham Biosciences, 

Piscataway, NJ).  MTIIa products were excised from the gel and incorporated 

radioactivity monitored by scintillation counting.  The resulting counts were corrected for 

background and the number of cytosine residues present in each PCR product.  The 

amount of MTIIa transcript per ng of total RNA was determined by calculating the 

amount of mimic DNA (cpms) required to equally compete with the endogenous 

transcript present in the 300 ng of total RNA (cpms).   

 
Analysis of metal content in clear human lenses.   

 

Forty-five clear, decapsulated human lenses ranging from 21 years of age to 72 

years of age were dried in a 60°C incubator overnight.  Dry weights for individual lenses 

were determined.  Triplicate groups of 5; young lenses, average age (25.8, 34.2 and 38.4 

years) respectively, middle-aged lenses, average age (51.6, 53.0 and 54.8 years) 

respectively, and old lenses, average age (69.2, 70.6 and 71.8 years) respectively, were 

pre-digested overnight in 5 mL concentrated HNO3, after which 3 mL of 30% H2O2 was 

added.  Digests were heated to 120°C (Jones JB Jr 1999).  Upon cooling, samples were 

brought to a final volume of 50 mL with de-ionized water and then filtered (0.2 µm).  

Samples were assayed for elemental metal concentrations by inductively coupled plasma 

emission spectroscopy (ICP) by the Analytical Laboratory at the National Research 
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Center for Coal and Energy at West Virginia University.  Elemental concentrations for 

each sample were corrected for differences in dry weights.  Differences between age 

group means were explored by analysis of variance and the Tukey-Kramer HSD 

procedure using the statistical package JMP (SAS Institute, Cary, NC). 

 

Estimation of MsrA transcript levels in human tissues.   

 

The relative levels of MsrA transcript in 5 pooled whole human lenses was 

compared with 18 other human tissues included in a total RNA tissue panel (BD 

Biosciences Palo Alto, CA).  Gene specific primers were designed for the human MsrA 

and GAPDH gene using the BLAST program and GenBank database 

(http://www.nlm.nih.ncbi.gov/), National Center for Biotechnology Information, 

Bethesda, MD).  Total RNA was isolated from whole lenses and RT-PCR was performed 

as described above.  The sequences of the primers used in this study were: MsrA forward 

5�-AGTACCTGAGCAAGAACCCCA-3�,  

MsrA reverse 5�-TCACTCAGACCCCAGAAGACA-3�,  

GAPDH forward 5�-CCACCCATGGCAAATTCCATGGCA-3� and  

GAPDH reverse 5�-TCTAGACGGCAGGTCAGGTCCACC-3�.  MsrA transcript was 

amplified for 34 PCR cycles with an annealing temperature of 56°C.  GAPDH transcript 

was amplified for 25 PCR cycles using an annealing temperature of 60°C.  All reactions 

were conducted using 100 ng of RNA and reagents contained in a commercial RT-PCR 

kit (One-Step kit, Invitrogen, Gaithersburg, MD) according to the manufacturer�s 

protocol.  Products were separated by gel electrophoresis and all products were 
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sequenced to ensure authenticity.  Product formation was tested to be linear over the 

number of PCR cycles indicated.  Densitometric scanning of the gel was performed to 

determine the relative levels of PCR products using an Epi Chemi II Darkroom gel 

documentation system (UVP Laboratory Products, Upland, CA).  These intensity values 

were used to calculate relative MsrA transcript production by normalizing the level of 

reach sample with its corresponding GAPDH level.  The adjusted values were used to 

rank the tissues form 1-19 with 1 being the highest level of MsrA expression and 19 

being the lowest.  

 

Analysis of MsrA transcript and protein levels in microdissected components of 

whole human lenses.   

 

The relative levels of MsrA transcript and protein was estimated between 

microdissected portions of adult human lenses by semi-quantitative RT-PCR and western 

analysis.  Eight clear human lenses were microdissected to remove the lens epithelium 

from the underlying fiber cells.  The fiber cells were further dissected into cortical and 

nuclear components.  RT-PCR was performed using 100 ng of total RNA as described 

above.  Protein was isolated from microdissected lens epithelia, cortical fibers and 

nuclear fibers by sonication.  Protein was denatured by boiling in 10% SDS buffer (10% 

w/v SDS; 0.5 M Tris-HCL, pH 6.8; 5% [v/v] glycerol) and were resolved by 

electrophoresis on 12% SDS polyacrylamide gels.  The proteins were subsequently 

transferred to nitrocellulose filters.  The resulting blots were washed with PBS for 30 

minutes and blocked with 5% milk in PBS overnight.  The blot was washed 5 times with 
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PBS over a period of 30 minutes and incubated with a 1:2000 dilution of anti-MsrA 

antibody for 1 hour at room temperature.  The blot was washed 5 times over a period of 

30 minutes and immunoreactive MsrA was visualized using ECL western blotting 

reagents (Amersham-Pharmacia, Piscataway, NJ) as specified by the manufacturer.    

 

Spatial localization of MsrA protein in an intact human lens.   

 

An 18-year-old female human lens (< 24 hours post-mortem) was fixed in 4% 

Para formaldehyde in PBS overnight, followed by cryoprotection overnight in 30% 

sucrose in PBS before embedding.  Frozen sections (14 µm) were prepared and air-dried.  

Sections were blocked for 1 hour at room temperature in DMEM, 10% fetal calf serum, 

1% goat serum, and 0.1% Triton X-100.  Sections were incubated overnight with a 

1:2000 dilution of anti-MsrA antibody in blocking solution at 4°C.  After five washes 

with PBS containing 0.1% Tween-20, sections were incubated with streptavidin-

conjugated secondary antibody and were visualized using the Vectastain Elite Kit as 

specified by the manufacturer.  Sections were counterstained with hematoxylin.  Identical 

procedures were carried out in the absence of primary antibody as control.   

 

SRA01/04 and 293-FT cell culture.   

 

Human lens epithelial cells (SRA01/04) (HLEs) and 293-FT kidney cells were 

grown and cultured in Dulbecco�s modified Eagle�s medium (Invitrogen, Gaithersburg, 

MD) supplemented with 15% fetal bovine serum (Invitrogen, Gaithersburg, MD), 
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gentamicin (50 units/mL; Invitrogen, Gaithersburg, MD), penicillin-streptomycin 

antibiotic mix (50 units/mL, Invitrogen, Gaithersburg, MD) and Fungizone (5 µL/mL, 

Invitrogen, Gaithersburg, MD) at 36.5°C in the presence of 5% CO2.   

 

Creation of MsrA over-expressing HLE cell lines.   

 

Over-expressing MsrA cell lines were created using the ViraPowerTM Lentiviral 

Expression System (Invitrogen, Gaithersburg, MD).  Briefly, primers were designed to 

amplify full length MsrA transcripts with the exception of the final 9 bps on the 3� end of 

the MsrA transcript encoding the last two amino acids and the stop codon.  Ablation of 

the stop codon was necessary to fuse the over-expressed protein to a V5-epitope tag, 

present in the over-expression vector.  This fusion allows for specific identification and 

differentiation of the recombinant protein from endogenous MsrA.  Semi-quantitative 

RT-PCR was employed to amplify MsrA transcripts present in total RNA isolated from 

human lens epithelial tissue as described above.  Products were separated by gel 

electrophoresis and the resulting band was excised from the gel slice using a QIAquick 

Gel Extraction Kit (Qiagen, Valencia, CA), cloned into the expression vector provided in 

the ViraPower kit and sequenced to ensure its proper orientation and integrity.  293-FT 

human kidney cells were transfected with the expression vector and other transfection 

components following the manufacturer�s protocol.  Virus-containing supernatants were 

harvested 72 hours posttransfection and used to infect HLEs.  Separately prepared virus 

stocks and viral titers were used to create multiple over-expressing cell lines.  A 
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concentration of 6 µg/mL of Blasticidin antibiotic (Invitrogen, Gaithersburg, MD) was 

used to select for those cells over-expressing the MsrA gene.    

 

Confirmation of MsrA over-expression in SRA01/04 cells.   

 

Semi-quantitative RT-PCR, using MsrA specific primers, was used to confirm the 

over-expression of MsrA mRNA levels as described above.  Western blots containing 15 

µg of protein extract from the over-expressing cells and control cells were incubated with 

an anti-V5 monoclonal antibody (Invitrogen, Gaithersburg, MD) at a dilution of 1:5000 

and MsrA recombinant protein was visualized as described above.   

 

siRNA-targeted gene silencing.   

 

Double-stranded siRNA�s specific for MsrA were designed and manufactured 

using Qiagen�s �4-for-silencing� service (Qiagen, Valencia, CA).  Multiple 

concentrations of the siRNA�s were used to transfect HLEs using the Transmessenger 

Transfection Reagent kit (Qiagen, Valencia, CA) according to the manufacturer�s 

protocol.  Total RNA was isolated from the cells 24, 48 and 72 hours posttransfection and 

semi-quantitative RT-PCR was sued to assay for reduction in MsrA mRNA levels for 

each of the siRNA�s tested as described above.  A single double-stranded siRNA 

construct with the following sequence: r(CCCCUGUAGCGGCCAAACAUU) and 

r(UGUUUGGCCGCUACAGGGGUC) was found to be the most effective in suppressing 
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the transcript levels of MsrA in lens cells and was used for all of the siRNA mediated 

gene silencing studies.   

 

Cell viability assays using MTS reagent.   

 

A CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, 

WI) kit containing the tetrazolium compound [3-(4,5-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium] (MTS) was used to monitor cell viability following the 

manufacturer�s protocol.  Briefly, the MTS compound is bioreduced by metabolically 

active cells into a colored formazan product through the action of dehydrogenase 

enzymes and NADPH or NADH.  Cell culture medium was removed and replaced with a 

1:5 dilution of the MTS reagent in phenol-free and FBS-free cell culture medium 

(Invitrogen, Gaithersburg, MD) and incubated in a 36.5°C incubator in the presence of 

5% CO2 for approximately 45 minutes or until a sufficient color change was observed.  

MTS color change was monitored using an ELX-800 universal plate reader (Bio-Tek 

Instruments, Winooski, VT) set at an absorbance reading of 492 nm.    

 

H2O2 sensitivity of control, over-expressing and siRNA treated HLEs.   

 

HLEs were plated in 96-well plates at a density of 20,000 cells per well and 

treated with multiple concentrations of H2O2 for 24 hours.  H2O2 treatments were 

analyzed in sets of four identical treatments and cell viability was monitored using MTS 

assays.  For siRNA studies, cells were transfected with 4 µg of siRNA per 500,000 cells, 
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or mock transfected using all of the transfection reagents in the absence of siRNA.  Mean 

absorbance and standard deviations for each treatment were determined.  
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ABSTRACT 

Purpose:  To identify lens epithelial genes whose expression levels are altered in age-

related human cataract.  Methods:  Epithelia from age-related cataracts and from clear 

lenses were microdissected and RNA was extracted.  RNAs were compared for gene 

expression differences by RT-PCR differential display.  Transcripts exhibiting altered 

levels of gene expression were cloned and identified by sequencing.  The expression 

levels of identified clones were confirmed by semi-quantitative reverse transcriptase PCR 

with three separately isolated RNA preparations.  Specific primers were designed and 

used to examine the mRNA levels of other genes important for protein synthesis.  

Results:  Numerous transcripts exhibited altered levels of gene expression.  One 

transcript exhibiting a decreased level of expression in cataract compared to clear lenses 

was identified as encoding ribosomal protein L21.  Three additional ribosomal proteins, 

L15, L13a, and L7a, also exhibited decreased expression in cataract compared to clear 

human lenses.  By contrast, the levels of elongation factor 1 alpha 1 (EF1α1) and 

initiation factor 4E (eIF4E) remained unchanged.  Conclusions:  The results provide 

evidence that human age-related cataract is associated with decreased expression of L21 

and other ribosomal proteins.  The results suggest that modulation of protein synthesis, 

and/or other functions mediated by ribosomal proteins, is associated with age-related 

cataract. 
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INTRODUCTION 
 

 Identification of genes whose expression levels are altered in age-related 

cataract relative to clear lenses points to those protective and regulatory processes 

important for the maintenance of lens transparency.    

In order to identify genes whose expression levels are altered in the presence of 

cataract, we have compared the gene expression profiles of epithelia isolated from human 

age-related cataract and clear lenses.  The lens epithelium contains the majority of 

metabolic enzymes present in the lens (Bloemendal 1981; Piatigorsky 1981a; Reddy 

1971b).  It is the first part of the lens exposed to environmental insult (Reddan JR. 1982; 

Spector 1982a).  Metabolic communication between the lens epithelium and the 

underlying fiber cells has been demonstrated (Rae et al 1996b), and damage to the lens 

epithelium and its enzyme systems is associated with cataract formation (Harding JJ 

1984; Hightower 1995; Phelps Brown 1996; Spector 1995).  

We have provided evidence that the human lens epithelium responds to the 

presence of age-related cataract through alterations in the levels of specific transcripts.  

These include decreased expression of protein phosphatase 2a regulatory subunit 

(Kantorow et al 1998b), increased expression of metallothionein IIa (Kantorow, Kays, 

Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b) and increased expression of 

osteonectin (Kantorow, Horwitz, and Carper 1998a).  

In the present study, we have used RT-PCR differential display and semi-

quantitative RT-PCR to provide evidence that the large ribosomal subunit proteins L21, 

L15, L13a and L7a exhibit decreased expression in cataract compared to normal human 

lenses. 
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Ribosomal proteins are major constituents of ribosomes that catalyze protein 

synthesis in the cytoplasm (Mager 1988).  The eukaryotic ribosome is composed of a 

large 60S and a small 40S subunit consisting of 3 RNAs and 46 proteins and 1 RNA and 

33 proteins respectively (Wool et al 1995).  The catalytic functions specific to individual 

ribosomal proteins are largely unknown (Wool, Chan, and Gluck 1995; Wool 1996).  

Under normal conditions, ribosomal proteins are synthesized stoichiometrically with 

rRNA to produce equimolar amounts of RNA and protein.  Under altered conditions, 

including events surrounding cellular growth and proliferation (Chester et al 1989), the 

expression levels of ribosomal proteins are altered.  For instance, the large ribosomal 

subunit proteins L3, L7, L8, L10, L23a, L27a, L36a and L39 exhibit decreased 

expression during neuronal differentiation of human embryonic carcinoma cells as do the 

levels of the small ribosomal subunit proteins (Bevort and Leffers 2000).  These 

alterations appear to be restricted to specific ribosomal proteins since some ribosomal 

protein levels are altered while others remain constant (Frigerio et al 1995; Laine et al 

1994). 

Independent alterations in ribosomal protein synthesis suggest that individual 

ribosomal proteins have functions beyond the simple structural makeup of the ribosome 

or protein synthesis.  For example, P0 and S3 possess endonuclease activity suggesting 

that they may have DNA repair functions (Grabowski et al 1991; Kim et al 1995) and L7 

can function as a co-activator of nuclear receptors (Berghofer-Hochheimer et al 1998).  

L7, S20, and S3a have been implicated in apoptosis (Goldstone and Lavin 1993; Naora et 

al 1998; Neumann and Krawinkel 1997).  Altered ratios of ribosomal subunits are also 

associated with stage-specific tissue development (Mazuruk et al 1996).  Several 
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ribosomal proteins are known to be induced by agents associated with cataract including 

RPL13a whose synthesis is activated upon exposure to UV-irradiation and RPL7 whose 

synthesis is activated upon exposure to UV-irradiation, heat-shock or carcinogens (Ben 

Ishai et al 1990). 

 The present data provide evidence that the levels of specific ribosomal transcripts 

are decreased in age-related human cataract.  Although we cannot distinguish that 

decreased ribosomal protein expression is a consequence of cataract or a response of the 

lens to cataract, the results suggest that regulation of protein synthesis and/or other 

functions mediated by ribosomes are associated with age-related cataract. 
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RESULTS 

  

Differential display detects altered gene expression between cataract and clear 

human lens epithelia.      

  

Differential display was performed on RNAs isolated from 30 pooled cataracts 

and 15 pooled normal human lens epithelia using two different primer sets.  Fig. 1A is the 

differential display profile obtained with primer set 1 and Fig. 1B is the differential 

display profile obtained using primer set 2.  Three bands (Fig. 1, A, B and C) were 

excised from the differential display gel and successfully re-amplified.  One band 

exhibited decreased expression between cataract and clear lenses by differential display 

(Fig. 1B, band C).  This band yielded an approximately 200bp re-amplification product.  

The two other bands (Fig. 1A, bands A and B) exhibited equal levels between cataract 

and clear epithelia.  These were selected as controls and yielded approximately 200bp re-

amplification products.  

Cloning and sequencing of these transcripts revealed that band C was identical 

with base pairs +168 through +352 from the start of translation of the reported cDNA 

sequence for ribosomal protein L21 with the exception of three mismatches (Fig. 2A).  

Control bands A and B were identical in sequence to +1108-1239 from the start of 

translation of the reported cDNA sequence for glycoprotein 130 (gp130) mRNA (Fig. 

2B).  It is uncertain whether the mismatches detected for L21 represent actual differences 

from the reported sequence or PCR incorporation errors. 
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Confirmation of ribosomal protein L21 and gp130 transcript levels between cataract 

and clear lens epithelia. 

  

Decreased expression of ribosomal protein L21 between epithelia isolated from 

cataractous and normal lenses was confirmed by semi-quantitative RT-PCR using 

separately isolated cataract and normal RNA samples prepared from an additional 20 

cataract and 8 normal lenses.  gp130 and β−actin transcripts were simultaneously 

examined as controls.  The RT-PCR primers for RPL21 amplification (Table 1) were 

designed to produce a 504bp product and were complementary to sense nucleotides +7 

through +26 and antisense nucleotides +534 through +511 of the L21 cDNA sequence 

from the start of translation.  The RT-PCR primers for gp130 amplification (Table 1) 

were complementary to sense nucleotides +2113 through +2137 and antisense 

nucleotides +2583 through +2559 of the gp130 cDNA sequence from the start of 

translation.    

Consistent with the differential display results (Fig. 1), L21 expression was 

almost entirely restricted to clear lens epithelium (Fig. 3B, compare lanes 3 and 7 to 4 

and 8).  As control, gp130 was detected at equal levels between cataract and normal 

epithelia (Fig. 3B, compare lanes 1 and 5 to 2 and 6).  As a further control, the levels of 

β−actin transcript were identical between cataract and normal epithelia (Fig. 3A, compare 

lanes 1 and 2).  

 As a further confirmation, the differences in L21 expression between cataract and 

clear lenses were examined by monitoring [α33P]-ATP incorporation into RT-PCR 

products using a third set of cataract and clear lens RNAs prepared from an additional 25 
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cataract and 10 clear lenses.  Consistent with the differential display results (Fig. 1), and 

the previous RT-PCR results (Fig. 3), L21 expression was significantly decreased 

between cataract and clear lenses (Fig. 4A, compare lanes 1 and 3 to 2 and 4).  As 

control, the levels of gp130 or GAPDH control transcripts were the same between 

cataract and clear lenses (Fig. 4, B and C).  Based on incorporated radioactivity, it is 

estimated that L21 levels are decreased 3- to 4-fold between cataract and clear human 

lenses.  

 

Spatial expression of ribosomal protein L21 mRNA in the clear human lens.  

  

In the differential display and semi-quantitative RT-PCR procedures, 

approximately 6-8mm portions of central clear lens epithelia were compared with 

approximately 5-6mm portions of central cataract epithelia.  To be certain that decreased 

expression of L21 in cataract verses clear lenses was not a consequence of spatial 

differences in L21 expression, 4 clear lenses were microdissected into whole (7-9mm), 

central  (4-6mm), and peripheral epithelium (2-3mm) portions and examined for L21 

expression by RT-PCR (Fig. 5).  L21 expression was also examined in whole lens minus 

the epithelium and in cortical lens fibers alone (Fig. 5). 

 Approximately equal levels of L21 were detected between whole epithelium (Fig. 

5A, WE), central epithelium (Fig. 5A, CE) and peripheral epithelium (Fig. 5A, PE), 

indicating that L21 expression differences did not result from spatial expression 

differences.  Slightly more RPL21 was detected in whole lens epithelia (Fig. 5A, WE) 

than in central or peripheral lens epithelium (compare lanes 1 and 2 to 3).  More L21 
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transcript was detected in whole lens minus epithelium (Fig. 5A, WF) than in cortical 

fibers alone (Fig. 5A, CF) (compare lanes 4 and 5).  As control, equal levels of GAPDH 

were detected in all samples (Fig. 5B, compare lanes 6-10). 

 

Expression of other ribosomal proteins in cataract verses normal human lenses.    

  

To determine if the levels of other ribosomal proteins in addition to L21 were 

decreased between cataract and clear lenses, the levels of three other large ribosomal 

subunit proteins L15, L13a and L7a were examined using RNAs prepared from an 

additional 15 cataract and 8 normal human lens epithelia (Fig. 6A).  The levels of the 

elongation factor ΕF1α1 and the initiation factor eIF4E were also examined (Fig. 6B).  

The level of GAPDH was examined as a control (Fig. 6C). 

 All three ribosomal proteins exhibited decreased expression in cataract compared     

to clear human lenses (Fig. 6A, lanes 1-12).  RPL15 and RPL13a exhibited the greatest 

differences in expression (Fig. 6A, compare lanes 1-4 to 5 and 6).  By contrast, the levels 

of EF1α1 and eIF4E transcripts were unaltered between cataract and clear lenses (Fig. 

6B, lanes 1-4).  As control, GAPDH transcript levels were identical between cataract and 

clear lenses (Fig. 6C, compare lanes 1 and 3). 
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Table 1.  Primers used for RT-PCR 

Gene Accession # Sequence Annealing Temperature   
    
L21-1 XM_040643 CGCCAAAATGACGAACACAA 55 C 
L21 -2 XM_040643 GTAGCCCAGAGGTCCTTTATTTTT 55 C 
gp130-1 XM_042068 GCCATAGTCGTGCCTGTTTGCTTAG 55 C 
gp130-2 XM_042068 GACTTGGACTGACGGAACTTGGTGT 55 C 
L15-1 NM_002948 TGTCATCATGCGCTTTCTTCTG 58 C 
L15-2 NM_002948 CCCTGTGCTTGTGGACTGGTT 58 C 
L13a-1 XM_027885 GTATGCTGCCCCACAAAACCA 58 C 
L13a-2 XM_027885 CAACGCATGAGGAATTAACAGTCTT 58 C 
L7a-1 XM_035105 ATTTTGGCATTGGACAGGACATC 58 C 
L7a-2 XM_035105 GGACCCCCATTTTACGACACAG 58 C 
eIF4E-1 XM_017925 CCCCCGACTACAGAAGAGGAGAA 55 C 
eIF4E-2 XM_017925 AACAGCGCCACATACATCATCACT 55 C 
EF1α1-1 XM_029230 TTTGCCGCCAGAACACAG 55 C 
EF1α1-2 XM_029230 CCAGCAGCAACAATCAGGAC 55 C 
GAPDH-1 BC004319 TGTTCCAATATGATTCCACCC 52 C 
GAPDH-2 BC004319 CCCACACCCTCTCACTGTA 52 C 
β−αχτιν−1 XM_037239 TCATGAAGTGTGACGTTGACATCCGT 60 C 
β−αχτιν−2 XM_037239 CCTAGAAGCATTTGCGGTGCACGATG 60 C 
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Figure 1.  RT-PCR differential display profile of cataractous (C) and clear (N) epithelia.  

A: The autoradiogram obtained using primer set 1.  B: The autoradiogram obtained using 

primer set 2.  Arrows indicate bands chosen for further analysis.  Approximate sizes in 

base pairs (bp) are indicated.  
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Figure 2.  Sequence alignment of ribosomal protein L21 and glycoprotein 130 (gp130) 

with reported sequences.  A: Differential display band C (middle) aligned with the 

reported sequence for ribosomal protein L21 (bottom).  B: Differential display bands A 

and B aligned with the reported sequence for gp130.  Top sequences indicate the 

differences between obtained and reported sequences. 
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Figure 3.  Confirmation of ribosomal protein L21 and glycoprotein 130 (gp130) mRNA 

levels between pooled cataract (C) and normal clear (N) lens epithelia.  Ethidium 

bromide stained gel showing the transcript levels detected by RT-PCR using indicated 

amounts of cataract (C) and clear lens (N) RNA.  A: Ethidium bromide stained gel 

showing the levels of β-actin control.  B: Ethidium bromide stained gel showing the 

levels of L21 and gp130 products.  PCR cycles are indicated. 
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Figure 4.  Re-confirmation of ribosomal protein L21 and glycoprotein 130 (gp130) 

transcript levels between cataract and normal clear lens epithelia.  Ethidium bromide 

stained gels showing the relative transcript levels of L21 (A), gp130 (B), and GAPDH 

(C), detected by RT-PCR using indicated amounts of cataract (C) and normal clear (N) 

lens epithelia.  L21 products were further examined by monitoring radioactive 

incorporation (cpms, indicated).  PCR cycles are also indicated. 
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Figure 5.  Spatial expression of ribosomal protein L21 in microdissected lens portions.  

Ethidium bromide stained gel showing the levels of L21 detected by RT-PCR using 

indicated amounts of RNA from whole epithelium (WE), central epithelium (CE), 

peripheral epithelium (PE), lens minus the epithelium (WF) and cortical fibers (CF). 
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Figure 6.  Expression of other ribosomal proteins in cataractous (C) and normal clear (N) 

lens epithelia.  Ethidium bromide-stained gels showing the relative levels of (A) L15, 

L13a, and L7a; (B) EF1α1 and eIF4E; and (C) GAPDH control transcript detected by 

RT-PCR. 
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DISCUSSION 

 

 In the present study RT-PCR differential display was used to detect decreased 

expression of ribosomal protein L21 between age-related cataract and clear human lenses.  

This result was confirmed by semi-quantitative RT-PCR using three separately isolated 

cataract and clear lens epithelia RNA preparations.  Based on incorporation of 

radioactivity, L21 expression is approximately 4-fold decreased between cataract and 

clear lenses. 

Decreased L21 expression between cataract and clear lenses is not a consequence 

of spatial differences between different regions of the lens epithelium since identical 

levels of L21 were detected by RT-PCR using central verses peripheral lens epithelial 

RNA.  

 It is unlikely that differences in L21 expression are a consequence of differences 

between post-mortem times since all samples were stored on ice during transport and no 

differences in the levels of GAPDH or βB2-crystallin transcripts could be detected 

between lens epithelia stored for 1 hour or 36 hours at 4°C (data not shown).  Moreover, 

the levels of the vast majority of transcripts detected between cataract and clear lenses in 

the present study by both differential display and RT-PCR, including GAPDH, GP130, 

EF1α1 and eIF4E, exhibited identical levels between cataract and normal lenses.  If post-

mortem times were a factor, it is likely that large differences in the levels of all 

transcripts would be detected. 

Every attempt was made to ensure the detection of cataract-specific differences in 

the present study.  However, we cannot rule out the possibility that changes in L21 
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expression could also be related to differences in age between normal and cataract lenses 

(averaging 60 and 71 years, respectively), or differences in medical histories, or 

racial/regional characteristics of individual donors.  The human population is diverse and 

each individual has a unique life history, making it extremely difficult, if not impossible, 

to obtain exact controls.  We are confident that our results are cataract-specific since 

identical levels of gene expression were detected in three separately isolated populations 

of normal and cataract lenses which would be expected to compensate for individual 

variability.  However, we cannot eliminate the possibility of these factors having some 

influence on our results or their interpretation. 

 The onset of cataract is gradual and some of the normal lenses used in the present 

study are likely to contain undetected opacities despite careful microscopic examination 

performed to reduce this possibility.  The presence of cataract lenses mixed with the 

normal lens population is likely to have the effect of reducing the magnitude of gene 

expression differences detected in the present study, but is not likely to change the overall 

trends in gene expression established by the present data. 

The lenses examined in this study were mostly mixed cataracts with about one 

fifth nuclear cataracts and a smaller percentage of cortical and posterior sub-capsular 

cataracts.  Thus, no direct correlation between decreased expression of L21 and cataract-

type can be made from the present study.  In preliminary experiments, no difference in 

the levels of L21 was detected in individual cataracts.  Further studies with large numbers 

of individual lenses will be needed to establish a relationship between L21 expression 

and specific cataract phenotypes. 



 53

L21 is not the only ribosomal protein exhibiting decreased expression between 

cataract and clear human lenses.  Decreased expression of L15, L13a and, to a lesser 

extent, L7a was also detected.  In contrast to the ribosomal proteins, two other proteins 

involved in protein synthesis, elongation factor EF1α1 and initiation factor eIF4E 

exhibited identical levels of expression between cataract and normal lenses.  Unchanged 

levels of EF1α1 and initiation factor eIF4E is not a surprising result since previous 

reports indicated that translational control (Chen et al 2000) and gene amplification 

(Sorrells et al 1998) were responsible for altered levels of these proteins respectively.  

 Decreased expression of ribosomal proteins is likely to result in decreased lens 

protein synthesis.  Protein synthesis is dependent on the relative levels of ribosomal 

proteins, ribosomal RNA, initiation factors and elongation factors (Wool, Chan, and 

Gluck 1995).  Since about 98% of total RNA is ribosomal RNA, and measurements 

performed in the present study were equalized to total RNA, the present data indicate that 

the ratio of ribosomal RNA to total RNA is decreased in cataract compared to normal 

lenses.  This is likely to result in decreased translation of lens proteins through decreased 

availability of ribosomal subunits. 

 It is not possible to distinguish whether decreased expression of ribosomal 

transcripts is a consequence of cataract or a specific response of the lens to the presence 

of cataract and further studies will be needed to elucidate the mechanisms underlying this 

phenomenon.  Regardless of whether decreased ribosomal transcript expression is a 

consequence of cataract, or a response of the lens to the presence of cataract, the present 

results suggest that decreased translation of proteins is associated with age-related 

cataract and this hypothesis is supported by other studies that have demonstrated 



 54

decreased protein synthesis in association with lens insult (Andley et al 1990; Garadi et al 

1984; Mazuruk, Schoen, Chader, Iwata, and Rodriguez 1996) and cataract (Duncan and 

Marcantonio 1982; Haloui et al 1990; Kuck 1990).  

In addition to having a direct role in protein synthesis, several ribosomal proteins 

identified in the present study have additional functions.  L13 has been proposed to act as 

a tumor suppressor (Frigerio, Berthezene, Garrido, Ortiz, Barthellemy, Vasseur, Sastre, 

Seleznieff, Dagorn, and Iovanna 1995) and L7 can function as a co-regulator of nuclear 

receptors (Hightower 1995).  L7 has also been implicated in apoptotic pathways 

(Goldstone and Lavin 1993; Naora, Takai, Adachi, and Naora 1998; Neumann and 

Krawinkel 1997) and is induced by UV-light and heat-shock (Ben Ishai, Scharf, Sharon, 

and Kapten 1990).  Many of these functions are also associated with cataract, and it is 

interesting to speculate that they may be related to the decreased expression of ribosomal 

transcripts identified in the present study. 

 Regardless of the function for decreased expression of ribosomal proteins in 

cataract, the present report supports the hypothesis that age-related cataract is associated 

with changes in the expression levels of specific genes.  The data also suggest that 

changes in protein synthesis and/or other pathways mediated by ribosomal proteins may 

play important roles in lens transparency. 
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ABSTRACT 

Purpose: Age-related cataract is a multi-factorial disease with a poorly 

understood etiology.  Numerous studies provide evidence that the human eye lens has 

evolved specific regulatory and protective systems to ameliorate lens damage associated 

with cataract.  Other studies suggest that the presence of cataract is associated with the 

altered expression of specific genes including, metallothionein IIa, osteonectin, 

transglutaminase 2, betaig-h3, multiple ribosomal proteins, ADAM9 and protein 

phosphatase 2A.  Here, we sought to identify further gene expression changes that are 

associated with cataract and to cluster the identified genes into specific biological 

pathways.  Methods: Oligonucleotide microarray hybridization was used to analyze the 

full complement of gene expression differences between lens epithelia isolated from 

human age-related cataract relative to clear lenses.  The expression levels of a subset of 

the identified genes were further evaluated by semi-quantitative RT-PCR.  The identified 

genes were functionally clustered into specific functional categories and the probability 

of over-representation of each category was determined using the computer program 

EASE.  Results: 412 transcripts were detected to be increased and 919 transcripts were 

detected to be decreased by 2-fold or more in lens epithelia isolated from age-related 

cataract relative to clear lenses.  Of these, 74 were increased and 241 were decreased at 

the 5-fold level or greater.  Seventeen genes selected for further confirmation exhibited 

similar trends in expression when examined by RT-PCR using both the original and 

separately prepared clear and cataract RNA populations.  Functional clustering of the 

identified genes using the EASE bioinformatics software package revealed that among 

others, transcripts increased in cataract are associated with transcriptional control, 
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chromosomal organization, ionic and cytoplasmic transport and extracellular matrix 

components while transcripts decreased in cataract are associated with protein synthesis, 

defense against oxidative stress, heat-shock/chaperone activity, structural components of 

the lens and cell cycle control.  Conclusions: These data suggest that cataract is 

associated with multiple previously identified and novel changes in lens epithelial gene 

expression and they point to numerous pathways likely to play important roles in lens 

protection, maintenance and age-related cataract.  
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INTRODUCTION 

 

The role of the eye lens is to focus incoming light onto the retina where visual 

information is then processed and transmitted to the brain.  The lens is an excellent model 

for the study of age-related diseases since it has no blood supply, contains some of the 

oldest cells in the body, grows throughout life and is exposed to multiple environmental 

insults including toxic metals and UV-light which can result in oxidative stress (Phelps 

Brown 1996).  Oxidative stress, combined with aging of the lens and consequential lens 

cell damage, is believed to contribute to age-related cataract formation, an opacity of the 

lens that results in blindness (Phelps Brown 1996).  Cataract is a major health issue 

worldwide as it is the leading cause of world blindness and surgical removal of the lens is 

the only known treatment.  Cataract is an enormous economic burden accounting for 12% 

of all Medicare expenses in the United States each year and with an aging American 

population cataract is, and will continue to be, a major economic and quality of life 

concern. 

 Despite the large number of studies documenting the biochemical and metabolic 

changes in the lens associated with age-related cataract, little is known about the changes 

in gene expression associated with this disease.  To identify these changes we have 

focused on the lens epithelium since this monolayer of cells is essential for the growth, 

differentiation and homeostasis of the entire organ (Bloemendal 1981; Piatigorsky 

1981a).  The lens epithelium contains the highest levels of enzymes and transport systems 

in the lens (Reddan JR. 1982; Reddy 1971b; Spector 1982a) and is the first part of the 

lens exposed to environmental insults (Reddan JR. 1982; Spector 1982a).  Multiple 
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studies suggest that the lens epithelium is capable of communicating with the underlying 

fiber cells (Rae, Bartling, Rae, and Mathias 1996b) and direct damage to the lens 

epithelium and its enzyme systems is known to result in cataract formation (Harding JJ 

1984; Hightower 1995; Phelps Brown 1996; Spector 1995).  Importantly, the majority of 

transcription occurs in the epithelial cells of the lens, and therefore these cells make up 

the majority of lens cells capable of responding to environmental insults and/or the 

presence of cataract through altered gene expression.  Since the lens epithelium is 

composed of a single cell-type it represents an ideal model for gene expression studies.    

Although a multitude of lens culture studies have documented changes in the 

expression of numerous genes in response to H2O2, toxic metals, UV-light and other 

stresses, and multiple studies have examined changes in gene expression in animal 

models of cataract, the full complement of gene expression differences that occur in the 

lens epithelial cells of human age-related cataract is not known.  Previous studies have 

used RT-PCR differential display and other techniques to identify differences in gene 

expression between human lens epithelial cells isolated from cataract relative to clear 

lenses.  For instance, metallothionein IIa (Kantorow, Kays, Horwitz, Huang, Sun, 

Piatigorsky, and Carper 1998b), osteonectin, also known as SPARC (Kantorow, Horwitz, 

and Carper 1998a), transglutaminase 2 (Wan et al 2002), and betaig-h3 (Lee et al 2000), 

are reported to be increased in cataract relative to clear lenses while multiple ribosomal 

proteins (Zhang et al 2002), ADAM9 (Lim et al 2002) and protein phosphatase 2A 

(Kantorow, Kays, Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b) are reported to 

be decreased in cataract relative to clear lenses.  
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While these studies have provided important insight into the roles of individual 

gene expression changes in age-related cataract, information concerning individual gene 

expression changes is not adequate to reveal related clusters of genes whose identities are 

necessary to elucidate the biological pathways that are altered in age-related cataract.  

Although recent studies have examined the global changes in gene expression that occur 

in cultured human lens epithelial cells exposed to H2O2, a stress associated with cataract 

(Goswami et al 2003; Spector et al 2002), to date, no comprehensive study has 

documented the global gene expression changes occurring between human age-related 

cataract and clear lenses or reported the functional clustering of age-related cataract-

specific genes.  This information is necessary to identify those biological pathways 

altered in age-related cataract and is essential towards understanding the molecular basis 

for this disease.  Despite the difficulty in obtaining sufficient numbers of human cataracts 

and clear lenses for this type of large-scale analysis, it is important that these studies be 

conducted with actual human lens epithelia since no tissue culture or animal model 

system can mimic the unique life history, physiology and genetic responses of the human 

lens.       

 Here, we have used oligonucleotide microarrays to compare the global gene 

expression profiles between pooled age-matched human lens epithelia isolated from 

cataract and clear lenses.  We demonstrate that more than 1300 of the 22,215 genes 

surveyed have expression levels that differ by 2-fold or more in cataracts compared to 

clear lenses.  Of these, 74 genes are increased and 241 genes are decreased in cataract 

relative to clear lenses at the level of 5-fold or greater.  Functional clustering and over-

representation analysis of the identified genes revealed that multiple biological pathways 
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are significantly altered upon cataract formation including chaperones, oxidative stress, 

protein synthesis and ion transport pathways.  These data provide the basis for designing 

functional experiments to examine the roles of the identified genes in lens maintenance 

and protection and they provide insight into those mechanisms that may be important for 

the development of, and defense against, age-related cataract. 
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RESULTS 

 

Oligonucleotide Microarray Analysis. 

  

 Analysis of gene expression differences between pooled age-matched cataract and 

clear lenses was conducted using Affymetrix HG_U133A microarrays as described in 

chapter II.  In this analysis, only one hybridization was conducted for each RNA 

population due to the extremely large number of human lens epithelia required for this 

type of analysis and the limited availability of these tissues.  Comparison of the gene 

expression data for 22,215 genes represented by 222,830 separate probe sets, each probe 

set containing 10 perfect match and 10 1 base pair mismatch probe sequences, between 

cataract and clear lens samples, identified 412 transcripts that were increased (Fig. 1) and 

919 transcripts that were decreased (Fig. 2) by 2-fold or greater in cataract compared to 

clear lenses.  Of the genes that exhibited increased expression in cataracts, 82% of them 

were increased by 2-5-fold, 13% by 5-9-fold, 3% by 9-15-fold, and 2% by greater than 

15-fold (Fig. 1).  Of the genes that exhibited decreased expression in cataracts, 74% of 

them fell into the 2-5-fold range, 15% in the 5-9-fold range, 7% in the 9-15-fold range 

and 4% in the 15-fold and greater range (Fig. 2).  Of the identified genes, 74 exhibited 

increased expression, of which 24 are ESTs or unknown gene products, and 241 

exhibited decreased expression, of which 25 are ESTs or unknown gene products, at the 

5-fold or greater level in cataract relative to clear lenses.  These genes and their relative 

expression levels, intensity values and accession numbers are listed in Table 2.   
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Semi-Quantitative RT-PCR Confirmations. 

  

 In order to confirm the accuracy of the microarray data, semi-quantitative RT-

PCR was conducted with the original RNA samples used for the microarray experiments 

and 2 other sets of separately prepared cataract and clear lens RNA samples.  Thirteen 

genes that were either increased or decreased by 2-fold or greater in cataracts were first 

examined using the same RNA samples that were used for the microarray studies.  These 

included Na+/H+ exchanger isoform II (6.50-fold), serine/threonine protein kinase (3.73-

fold), Na+/K+ ATPase (8.00-fold), secreted apoptosis related protein 2 (6.06-fold), 

pleiotrophin (7.46-fold) and E3-ubiquitin ligase (4.59-fold) which all exhibited increased 

expression in cataracts according to the microarray data and heat shock protein 27-1 

(128-fold), αA-crystallin (22.63-fold), ribosomal protein large subunit 13a (2.64-fold), 

metallothionein IF (5.66-fold), metallothionein IH (3.48-fold), metallothionein IG (3.73-

fold) and glutathione peroxidase-1 (4.92-fold) which all exhibited decreased expression 

in cataracts according to the microarray data. 

 Eleven out of the 13 genes examined followed the same trends in gene expression 

as demonstrated by the microarray study (Fig. 3A) using the original RNA samples 

including Na+/H+ exchanger isoform II, secreted apoptosis related protein 2, pleiotrophin, 

E3-ubiquitin ligase, heat shock protein 27-1, αA-crystallin, ribosomal protein large 

subunit 13a, metallothionein IF, metallothionein IH, metallothionein IG and glutathione 

peroxidase-1.  The 2 genes that did not follow the same trends in gene expression as 

demonstrated by the microarray data were serine/threonine protein kinase and Na+/K+ 

ATPase (Fig. 3A).  
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 A second sample of RNA was prepared from an additional 50 cataract and 10 age-

matched clear lenses.  Due to the limited amount of RNA recovered from the second 

population of cataracts, 7 out of the 13 above-mentioned genes, including 2 that did not 

confirm the microarray data using the first samples of RNA, were re-examined using the 

new samples of RNA.  Of these, 5 of the 7 genes exhibited similar trends as detected in 

the microarray analysis including Na+/H+ exchanger isoform II, pleiotrophin, 

metallothionein IF, serine/threonine protein kinase and Na+/K+ ATPase (Fig. 3B).  The 2 

genes that did not reconfirm in the second sample of RNA were αA-crystallin and 

ribosomal protein large subunit 13a.  

In order to further confirm the trends exhibited by the microarray study and to 

demonstrate that the PCR cycles used are within the linear range, we examined two 

particular genes of interest in a third sample of RNA prepared from another 50 cataract 

and 10 age-matched clear lenses.  Consistent with the microarray data, both Hsp 27 form 

1 and 2 exhibited decreased expression in cataract relative to clear lenses using a fixed 

amount of cataract RNA (50 ng) and 5 different amounts of clear lens RNA (5, 10, 30, 50 

and 100 ng) (Fig. 4).  Heat shock protein 27 form 1 was decreased in cataract relative to 

clear lenses by approximately 10-fold while heat shock protein 27 form 2 was decreased 

in cataract by approximately 2-fold.  Using this same sample of RNA we examined the 

expression levels of 3 genes (catalase, MTF-1 and αB-crystallin) that were unaltered 

between cataracts and clear lenses according to the microarray data as a further control.  

All 3 of these genes exhibited identical expression levels between cataract and normal 

lens epithelia as predicted by the microarray analysis (Fig. 4).   
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Densitometric gel scanning of all of the semi-quantitative RT-PCR products 

described in figures 3 and 4 was also conducted to further evaluate the data (Table 3).  

Although all of the calculated fold changes do not exactly match those detected by the 

microarray hybridization data, they importantly follow the same general trends in gene 

expression revealed by the microarray data.  These combined confirmations suggest that 

the gene expression trends revealed by microarray analysis are approximately 84% 

accurate.   

 

Functional Clustering Analysis of Differentially Expressed Transcripts. 

  

 The set of genes that exhibited either increased or decreased expression levels of 

2-fold or greater was analyzed for significant enrichment with respect to various 

categories of gene function using the EASE bioinformatics package 

(http://david.niaid.nih.gov/david/ease.htm).  Categories enriched within the mRNAs 

increased or decreased at the 2-fold or greater level with an EASE score of less than 0.05 

are shown in Figures 5-8 and are listed in Table 4.  Because many genes have more than 

one function and are involved in various pathways, many of the identified genes appear 

in multiple categories.  

 Statistically significant trends in biological processes (Fig. 5) and molecular 

functions (Fig. 6) with increased gene expression in cataract were chromosome 

organization, nuclear organization, transcription/DNA-dependent, transcription, nucleic 

acid metabolism, nucleic acid binding, ligand binding or carrier and DNA binding.  

Statistically significant trends in biological processes (Fig. 7) and molecular functions 
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(Fig. 8) with decreased gene expression in cataract were RNA splicing, protein 

biosynthesis, protein synthesis elongation, protein synthesis initiation, macromolecule 

biosynthesis, amine biosynthesis, peroxidase reaction, microtubule-based process, 

organelle organization, cytoskeleton organization, temperature response, heat shock 

response, vision, response to external stimulus, U6 snRNA binding, pre-mRNA splicing 

factor, mRNA binding, proteasome endopeptidase, translation factor, selenium binding, 

alcohol dehydrogenase, heat shock protein, oxidoreductase, glutathione peroxidase, 

chaperone, structural constituents of lens and structural molecule.  Specific examples of 

the genes included in each category are summarized in Table 4. 
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Table 1.  Primers Used for RT-PCR         
   Annealing  
Gene Abbreviation Primer Sequence Temperature Accession No. 
     
Hsp27-1 Hsp27-1 CGCGCTCAGCCGGCAACTCAG 64 XM_055937 
Hsp27-1 Hsp27-1 AGGGGTGGGCATCCAGGCTAAGG 64 XM_055937 
Hsp27-2 Hsp27-2 TCCTGACCCCCACACTCTACCA 61 NM_001541 
Hsp27-2 Hsp27-2 GCTGCCTCCTCCTCTTCCTCTG 61 NM_001541 
αΑ−crystallin αΑ CCACCTCGGCTCCCTCGTCCTAAG 64 NM_000394 
αΑ−crystallin αΑ CCATGTCCCCAAGAGCGGCACTAC 64 NM_000394 
RPL13a RPL13a GTATGCTGCCCCACAAAACCA 58 XM_027885 
RPL13a RPL13a CAACGCATGAGGAATTAACAGTCTT 58 XM_027885 
Metallothionein IF MTIF GCTTCTCTCTTGGAAAGTCC 55 M10943 
Metallothionein IF MTIF GGCATCAGTCGCAGCAGCTG 55 M10943 
Metallothionein IH MTIH GAACTCCAGTCTCACCTCGG 55 X64834 
Metallothionein IH MTIH GACATCAGGCACAGCAGCTG 55 X64834 
Metallothionein IG MTIG GCCTCTTCCCTTCTCGCTTG 55 XM_048213 
Metallothionein IG MTIG GACATCAGGCGCAGCAGCTG 55 XM_048213 
Glutathione Peroxidase 1 GPX-1 GACCGACCCCAAGCTCATCACC 60 M21304 
Glutathione Peroxidase 1 GPX-1 ATCAACAGGACCAGCACCCATCTC 60 M21304 
Na+/H+ Exchanger II Na+/H+ Ex GCCATCTGTTTTGCGTTAGTGTTT 56 AF073299 
Na+/H+ Exchanger II Na+/H+ Ex GTTCGCTGACGGATTTGATAGAGA 56 AF073299 
Serine/Threonine Protein Kinase S/T PK TGTTGGTGGGGATTTGCTTACTCT 57 NM_003607 
Serine/Threonine Protein Kinase S/T PK CTTGGGCTGGAAACTGAAACCTCT 57 NM_003607 
Na+/K+ ATPase Na/K ATPase AAAGTACAAAGATTCAGCCCAGAG 52 BC000006 
Na+/K+ ATPase Na/K ATPase GGAGTTTGCCATAGTACGGATAAT 52 BC000006 
Secreted Apoptosis Related Protein SARP TTGTAATCCAGTCGGCTTGTTCTT 56 AF017987 
Secreted Apoptosis Related Protein SARP CTGGGCCTTTGCTGTCACTATTAC 56 AF017987 
Pleiotrophin Ple. GTTCCCCGCCTTCCAGTCCA 60 M57399 
Pleiotrophin Ple. TGCCCAGCCCACAGTCTCCA 60 M57399 
E3-Ubiquitin Ligase UBE3-Lig CAGGGAATGGTTGTATCTCTTGTC 53 AY014180 
E3-Ubiquitin Ligase UBE3-Lig AATGCCTCGTAAAAATCTCCAGTT 53 AY014180 
αΒ−crystallin αΒ AGCCGCCTCTTTGACCAGTTCTTC 60 NM_001885 
αΒ−crystallin αΒ GCGGTGACAGCAGGCTTCTCTTC 60 NM_001885 
Catalase Cat TACCCCTCCTGGACTTTTTACATC 52 NM_001752 
Catalase Cat CCTCATTCAGCACGTTCACATAGA 52 NM_001752 
Metal-responsive Transcription Factor 1 MTF-1 GGGCCAGGACCTCAGCACAAT 59 XM_001412 
Metal-responsive Transcription Factor 1 MTF-1 AGAAGCCCCAGCAACAACAGAAAG 59 XM_001412 
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Table 2: Genes exhibiting increased expression in cataract 
relative to clear lenses.     
     
Gene name Accession # Normal Intensity  Cataract Intensity Fold 
nuclear phosphoprotein BE796924 348.8 (P) 1730.7 (P) 5.28 
di-N-acetyl-chitobiase NM_004388 117.2 (A) 322.9 (P) 5.28 
Hypothetical protein FLJ21551 NM_024801 121 (P) 524.5 (P) 5.28 
Hypothetical protein PRO1048 NM_018497 29.3 (A) 261.1 (P) 5.28 
EST AA972711 354.7 (P) 1919.5 (P) 5.28 
Human erythroid-specific transcription factor EKLF U65404 70.3 (P) 408.9 (P) 5.28 
Chromosome 14 clone AC007956 154.4 (P) 649.3 (P) 5.66 
tetratricopeptide repeat domain 3 AW510696 431.9 (P) 1752.4 (P) 5.66 
Hypothetical protein FLJ11827 NM_025093 58.5 (A) 338.9 (P) 5.66 
ubinuclein 1 T70262 397.9 (P) 1981.9 (P) 5.66 
alpha thalassemiamental retardation syndrome X-linked AI650257 154.9 (P) 852.1 (P) 5.66 
Neuron-specific  protein  NM_014392 54.5 (A) 338.2 (P) 5.66 
growth factor receptor-bound protein 10 D86962 126.6 (P) 544.2 (P) 5.66 
Disabled homolog 2 (mitogen-responsive phosphoprotein) NM_001343 237 (P) 1096.6 (P) 6.06 
Secreted apoptosis related protein 2 (SARP2) AF017987 473.2 (P) 3068.6 (P) 6.06 
acid sphingomyelinase-like phosphodiesterase AA873600 48.7 (A) 264.1 (P) 6.06 
EST AI694562 2039.8 (P) 14553.9 (P) 6.06 
KIAA1641 protein  NM_025190 178.7 (P) 878.1 (P) 6.06 
Typtophan 2,3-dioxygenase  NM_005651 37.4 (A) 324.8 (P) 6.06 
adducin 3 (gamma) AI763123 100.8 (A) 379.3 (P) 6.06 
Type II Golgi membrane protein  NM_014498 100 (A) 618.9 (P) 6.06 
EST AA634446 13.3 (A) 137.2 (P) 6.5 
Na+H+ exchanger isoform 2  AF073299 133.9 (A) 1443.4 (P) 6.5 
Ser-Thr protein  kinase  NM_003607 1015.2 (P) 3771 (P) 6.5 
Sjogren syndrome antigen B BG532929 47.8 (A) 374.3 (P) 6.5 
clone COL05464 AK025143 68.1 (A) 571.6 (P) 6.5 
EST BF592782 479.5 (P) 3072.6 (P) 6.5 
Bcl-2-associated transcription factor short form mRNA AF249273 94.5 (P) 518.1 (P) 6.5 
eukaryotic translation initiation factor 4 gamma BE966878 112.4 (P) 612.6 (P) 6.5 
Nijmegen breakage syndrome 1 (nibrin) AI796269 83.6 (A) 1188 (P) 6.96 
DEADH (Asp-Glu-Ala-AspHis) box polypeptide 17 AW188131 153.2 (A) 1396 (P) 6.96 
KIAA0876 protein AW237172 128.9 (A) 1181.2 (P) 6.96 
Arginine  methyltransferase U79286 62.8 (A) 366.1 (P) 6.96 
Small  nuclear RNA activating complex, polypeptide 1 NM_003082 145.6 (P) 643.5 (P) 6.96 
Zinc finger protein 161 (ZNF161) NM_007146 81.9 (A) 446.7 (P) 6.96 
KIAA1641 protein AB046861 32 (A) 201.3 (P) 6.96 
copine III AA541758 96.6 (A) 775.4 (P) 6.96 
natural killer-tumor recognition sequence AI361805 398.2 (P) 2412.8 (P) 6.96 
KIAA0480 gene product AW299294 154 (P) 997.5 (P) 7.46 
Nerve growth factor (HBNF-1) M57399 1448.1 (P) 7425.6 (P) 7.46 
natural killer-tumor recognition sequence AI688640 95.4 (P) 829 (P) 7.46 
pleiorophin  BC005916 1187.8 (P) 10502.3 (P) 7.46 
nuclear receptor interacting protein 1 AI824012 58.3 (A) 383.9 (P) 7.46 
EST AW293343 84.3 (P) 630.2 (P) 7.46 
ATPase, Na+K+ transporting, beta 1 polypeptide BC000006 1233.8 (P) 14152 (P) 8 
Glutathione peroxidase 2  NM_002083 31.7 (A) 257.1 (P) 8 
transformer-2 alpha AW978896 97 (A) 618.3 (P) 8 
Tubby like protein 1  NM_003322 27.3 (A) 211.3 (P) 8 
EST BF448315 197.7 (P) 1500.5 (P) 8 
DNA for HBV integration sites X04014 80.7 (A) 607.8 (P) 8 
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similar to widely-interspaced zinc finger motifs AI828531 34.6 (A) 273.6 (P) 8 
cDNA DKFZp566M043  AL050065 36.2 (A) 322.8 (P) 8.57 
secretory carrier membrane protein 1 BF058944 177.3 (P) 928.9 P) 8.57 
chondroitin sulfate proteoglycan 6 (bamacan) AI373676 71.3 (P) 1010.3 (P) 8.57 
KIAA0594 protein AW183677 39.1 (A) 404.7 (P) 9.19 
Claudin 1 (CLDN1) NM_021101 41 (A) 268.1 (P) 9.85 
KIAA0256 gene product N52532 71.7 (A) 1709.6 (P) 9.85 
HRIHFB2017 AB015331 64.1 (A) 368.4 (P) 9.85 
KIAA0888 protein AB020695 173.8 (A) 2224.6 (P) 10.56 
Osteomodulin AI765819 26.4 (A) 351.8 (P) 11.31 
Bicaudal-D (BICD) U90030 40.8 (A) 888.1 (P) 12.13 
EST AI278204 46.2 (A) 331.8 (P) 12.13 
cDNA: FLJ21198  AK024851 13.5 (A) 217.6 (P) 12.13 
KIAA0447 gene product BE885244 45.2 (A) 664 (P) 13 
chloride channel 3 AA902971 25.7 (A) 221.7 (P) 14.93 
Wiskott-Aldrich syndrome-like BE504979 51.4 (A) 686 (P) 14.93 
Cofactor required for Sp1 transcriptional activation, subunit 2  NM_004229 9.2 (A) 196.8 (P) 16 
KIAA0494 gene product BC002525 15.5 (A) 419.6 (P) 17.15 
ring finger protein 15 AU157590 62.5 (A) 719.2 (P) 19.7 
myeloidlymphoid or mixed-lineage leukemia AA715041 39.2 (A) 518.1 (P) 19.7 
PRO2667 AF119889 31.3 (A) 717.7 (P) 19.7 
cDNA DKFZp564M2422  AL050388 4.2 (A) 185.4 (P) 19.7 
Similar to histamine N-methyltransferase BC005907 10.4 (A) 308 (P) 27.86 
Testis-specific XK-related protein on Y  NM_004677 4.3 (A) 124.2 (P) 32 
      
     
Genes exhibiting decreased expression in cataract relative to 
clear lenses.     
     
Gene name Accesion # Normal Intensity  Cataract Intensity Fold 
Jagged 1  U73936 916.3 (P) 69.9 (A) 5.28 
Ribosomal protein, large, P0  NM_001002 14191.2 (P) 3138.4 (P) 5.28 
Fibrillin 1  NM_000138 404.2 (P) 55.2 (A) 5.28 
Similar to eukaryotic translation initiation factor 4A, isoform 1 BC006210 2672.3 (P) 494.9 (A) 5.28 
EST AI799802 228.4 (P) 23.1 (A) 5.28 
Zinc finger protein 219  NM_016423 300.2 (P) 53.3 (A) 5.28 
Similar to eukaryotic translation initiation factor 3, subunit 8  BC000533 2697.1 (P) 471.5 (P) 5.28 
heat shock cognate protein 54 AB034951 1342.6 (P) 152 (A) 5.28 
Pyruvate kinase, muscle  NM_002654 1098.2 (P) 221.9 (A) 5.28 
IMP (inosine monophosphate) dehydrogenase 2  NM_000884 1011.6 (P) 124.8 (A) 5.28 
EST AI816291 458.9 (P) 66.1 (A) 5.28 
Translocase of inner mitochondrial membrane 23 homolog  NM_006327 435.6 (P) 86.5 (A) 5.28 
4-hydroxyphenylpruvate dioxygenase  NM_002150 206.7 (P) 36.9 (A) 5.28 
Heat shock 27kD protein 2  NM_001541 1056.5 (P) 172.3 (A) 5.28 
Carbonyl reductase 1 BC002511 589.2 (P) 27.6 (A) 5.28 
Proteasome (prosome, macropain) subunit, beta type, 4  NM_002796 875.3 (P) 143 (A) 5.28 
Small membrane protein 1  NM_014313 502 (P) 78.7 (A) 5.28 
Fatty acid binding protein 3 NM_004102 244 (P) 48.2 (A) 5.28 
Calpastatin AF327443 300.3 (P) 81.1 (A) 5.28 
Myosin, light polypeptide, regulatory, non-sarcomeric  NM_006471 3899.8 (P) 876.3 (P) 5.28 
Proteolipid protein 2 (colonic epithelium-enriched) NM_002668 437.4 (P) 50.8 (A) 5.28 
ribosomal protein L4 AI953886 6333.2 (P) 716.8 (P) 5.28 
cDNA DKFZp586D1122  AL050166 199.2 (P) 29.6 (A) 5.28 
poly(rC)-binding protein 2  NM_005016 1855.1 (P) 204.4 (A) 5.28 
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Metallothionein If gene  M10943 5381.9 (P) 776.9 (A) 5.66 
3-hydroxy-3-methylglutaryl-Coenzyme A reductase AL518627 159.3 (P) 30.3 (A) 5.66 
G8 protein  NM_016947 3539.8 (P) 558.7 (P) 5.66 
SMX5-like protein AF196468 358.8 (P) 39.1 (A) 5.66 
Microtubule-associated proteins 1A1B light chain 3 AF183417 423.7 (P) 79.3 (A) 5.66 
PRO2640 AF116710 8064.3 (P) 991.9 (P) 5.66 
MYLE protein  NM_014015 471 (P) 52.6 (A) 5.66 
Cold shock domain protein A  NM_003651 1098.3 (P) 144.3 (A) 5.66 
kinesin 2 AA284075 236.3 (P) 40.9 (A) 5.66 
Cell membrane glycoproein NM_007002 368.8 (P) 75.1 (A) 5.66 
Biliverdin reductase  NM_000713 1583.4 (P) 498.1 (P) 5.66 
Nuclear localization signal deleted in velocardiofacial syndrome  NM_003776 970.5 (P) 125.9 (A) 5.66 
clone RP11-486O2  AL356115 10470 (P) 1310.9 (P) 5.66 
proteasome (prosome, macropain) subunit, alpha type, 3  NM_002788 452 (P) 46 (A) 5.66 
Cyclin D1  BC000076 182.7 (P) 21.7 (A) 5.66 
Heat shock 70kD protein 1B  NM_005346 1660.9 (P) 397.7 (P) 5.66 
CD24 signal transducer L33930 736.9 (P) 187.1 (A) 5.66 
Zyxin related protein ZRP-1 AF000974 792.4 (P) 113.6 (A) 5.66 
solute carrier family 2 (facilitated glucose transporter), member 3 BE550486 210.6 (P) 76.2 (A) 5.66 
Tubulin, beta 5 BC005838 3024.6 (P) 533.4 (M) 5.66 
weakly similar to LONGEVIY-ASSURANCE PROTEIN 1 AK001105 1037.6 (P) 178.7 (A) 5.66 
clone 1033B10  AL031228 565 (P) 92 (A) 6.06 
S-adenosylhomocysteine hydrolase (AHCY) NM_000687 365.9 (P) 59.1 (A) 6.06 
ribosomal protein, large, P0 AI953822 8792.1 (P) 1133.5 (P) 6.06 
Ovarian beta-A inhibin M13436 6485.9 (P) 898.3 (P) 6.06 
MYG1 protein  NM_021640 583.2 (P) 103.9 (A) 6.06 
ribosomal protein L13 AI186735 7108.6 (P) 1468.8 (P) 6.06 
Splicing factor arginineserine-rich 9  NM_003769 1438.8 (P) 422.6 (A) 6.06 
HDCMB21P gene AF072098 10344.7 (P) 699.8 (P) 6.06 
Goliath protein  NM_018434 340.6 (P) 28.8 (A) 6.06 
Eukaryotic translation initiation factor 2B, subunit 1  NM_001414 281.1 (P) 54.1 (A) 6.06 
ribosomal protein L13 AW574664 3994.8 (P) 371.4 (A) 6.06 
Proteasome (prosome, macropain) subunit, beta type, 7  NM_002799 2050 (P) 332.4 (M) 6.06 
Tubulin, beta, 2 BC004188 1084.5 (P) 202.4 (A) 6.06 
Phosphatidylethanolamine N-methyltransferase  NM_007169 670.3 (P) 47.1 (A) 6.06 
Adaptor-related protein complex 2, mu 1 subunit NM_004068 863.9 (P) 165.4 (A) 6.06 
cDNA DKFZp564B076  AL049313 470.2 (P) 52.3 (A) 6.06 
clone RP4-781L3  AL121994 897.8 (P) 150.3 (A) 6.06 
Alpha-actinin-2 associated LIM protein mRNA AF002280 189.4 (P) 28.7 (A) 6.06 
Threonyl-tRNA synthetase  NM_003191 958 (P) 97.8 (A) 6.06 
MCP-1=monocyte chemotactic protein  S69738 771 (P) 73 (A) 6.5 
eukaryotic translation elongation factor 1 gamma BE963164 13185.4 (P) 1579.7 (A) 6.5 
Lectin, galactoside-binding, soluble, 1 (galectin 1) NM_002305 2609.9 (P) 94.5 (A) 6.5 
CGI-44 protein; sulfide dehydrogenase like  NM_021199 1703.9 (P) 151.3 (A) 6.5 
DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 532.8 (P) 77.4 (A) 6.5 
Fragile histidine triad gene  HN_002012  341.8 (P) 59.8 (A) 6.5 
Carboxypeptidase B1  NM_001871 337.8 (P) 35.4 (A) 6.5 
Crystallin, beta B2  NM_000496 20885.8 (P) 3332.7 (P) 6.5 
Meiotic recombination protein REC14 AF309553 134.4 (P) 34.9 (A) 6.5 
Selenoprotein W, 1  NM_003009 707.1 (P) 39.3 (A) 6.5 
mRNA for hMBF1alpha AB002282 2012.1 (P) 211.9 (A) 6.5 
tudor repeat associator with PCTAIRE 2 AW129593 2669.4 (P) 387.8 (M) 6.5 
EST AV705559 593.1 (P) 107.4 (A) 6.5 
Clone: SMAP31-12 AB059408 483.7 (P) 68.1 (A) 6.5 
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Growth arrest and DNA damage inducible protein beta  AF087853 1895.6 (P) 39.3 (A) 6.5 
Crystallin, gamma B  NM_005210 721 (P) 104.8 (A) 6.5 
Eukaryotic translation elongation factor 1 delta  NM_001960 3814.7 (P) 480.1 (A) 6.5 
FK506-binding protein 2  NM_004470 503.6 (P) 17.5 (A) 6.5 
HLA class II region expressed gene KE2  NM_014260 382.3 (P) 30.3 (A) 6.5 
Neuronal cell adhesion molecule  NM_005010 613.1 (P) 94.8 (A) 6.5 
polymerase (RNA) II (DNA directed) polypeptide J BG335629 552.8 (P) 31.8 (A) 6.5 
Ribosomal protein L27a  NM_000990 12053.7 (P) 1609.9 (P) 6.5 
EST L43577 354.2 (P) 43 (A) 6.96 
Tetraspan 3  NM_005724 183 (P) 21.3 (A) 6.96 
phosphoserine aminotransferase AI889380 4608.5 (P) 970.4 (P) 6.96 
Nuclear prelamin A recognition factor  NM_012336 482 (P) 58.2 (A) 6.96 
Zinc finger protein homologous to Zfp-36 in mouse  NM_003407 651.1 (P) 63.6 (A) 6.96 
cDNA DKFZp564J1516  AL136601 192.2 (P) 30.5 (A) 6.96 
Antizyme inhibitor NM_015878 232.8 (P) 25.5 (A) 6.96 
G protein-coupled receptor 39 AL567376 257 (P) 63.1 (A) 6.96 
prostatic binding protein BE969671 3392.7 (P) 310.4 (P) 6.96 
Tetratricopeptide repeat domain 2  NM_003315 397.2 (P) 43.4 (A) 6.96 
Ribosomal protein S15  NM_001018 15776.8 (P) 2287.8 (P) 6.96 
Hypothetical protein FLJ11730  NM_022756 639.3 (P) 105.1 (A) 6.96 
kinesin 2 AA284075 199.9 (P) 21.7 (A) 6.96 
Prefoldin 5  NM_002624 2490.6 (P) 261.6 (A) 6.96 
Poly(A)-binding protein, cytoplasmic 4 (inducible form) NM_003819 437.9 (P) 32.9 (A) 6.96 
Ribosomal protein L35  NM_007209 6130.5 (P) 732.7 (P) 6.96 
Catenin (cadherin-associated protein), alpha 2  NM_004389 350.7 (P) 28.5 (A) 6.96 
Hypothetical protein FLJ10493  NM_018112 107.9 (P) 17.8 (A) 6.96 
Lysosomal-associated membrane protein 1  NM_005561 888.3 (P) 54.1 (A) 6.96 
Human growth hormone-dependent insulin M31159 2003.6 (P) 285.9 (P) 6.96 
glutathione peroxidase 3 AW149846 5548.5 (P) 521 (P) 6.96 
Prostatic binding protein  NM_002567 4056.2 (P) 356.9 (A) 7.46 
GMPR2 for guanosine monophosphate reductase isolog  NM_016576 584.3 (P) 38.3 (A) 7.46 
hemoglobin, alpha 1 T50399 427.5 (P) 75.7 (A) 7.46 
Ribosomal protein L8  NM_000973 5766.6 (P) 462.4 (A) 7.46 
F-box protein FLR1  AF142481 771.2 (P) 114.6 (A) 7.46 
Homo sapiens, Similar to tubulin, beta, 4 BC002654 1096.5 (P) 127.3 (A) 7.46 
Ribosomal protein L29  NM_000992 1889.9 (P) 228.7 (A) 7.46 
KIAA0874 protein AB020681 249.4 (P) 45.6 (A) 7.46 
CGI-91 protein  NM_016034 327.1 (P) 49.7 (A) 7.46 
Pre-mRNA splicing factor 2 p32 subunit  L04636 518.2 (P) 46.5 (A) 7.46 
Phosphoglycerate kinase 1  NM_000291 2262.5 (P) 332.5 (P) 7.46 
Human 28S rRNA sequence M11167 3708.3 (P) 648.4 (P) 7.46 
Similar to granulin BC000324 480 (P) 65.7 (A) 8 
hypothetical protein FLJ10698 AI951798 422.6 (P) 49 (A) 8 
solute carrier family 25  member 6 AI961224 6069.8 (P) 397.1 (A) 8 
SKIP for skeletal muscle and kidney enriched inositol phosphatase AI806031 249.4 (P) 30.6 (A) 8 
Protein kinase  AF133207 2162.2 (P) 316 (A) 8 
Extracellular matrix protein 1  U65932 1252.6 (P) 150.3 (A) 8 
Alpha II spectrin U83867 843.9 (P) 96.5 (A) 8 
nucleophosminB23.2 AB042278 655 (P) 70.7 (A) 8 
Ribosomal protein L4  NM_000968 7153.3 (P) 854.4 (P) 8 
Phosphatidylcholine transfer protein  NM_021213 205 (P) 23.8 (A) 8 
SEC13 (S. cerevisiae)-like 1  NM_030673 420.4 (P) 37.6 (A) 8 
Homo sapiens mRNA for puromycin sensitive aminopeptidase AJ132583 303.3 (P) 39.2 (A) 8 
Eukaryotic translation initiation factor 3, subunit 4 BC000733 1480 (P) 131.3 (A) 8 
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SET translocation (myeloid leukemia-associated) AI278616 459 (P) 35.1 (A) 8 
PRO1608 AF119850 10333.9 (P) 1251.4 (P) 8 
Human bcl-1 mRNA M73554 780.7 (P) 139.7 (A) 8.57 
ECSIT  NM_016581 238.5 (P) 27.4 (A) 8.57 
MCT-1 protein NM_014060 328.5 (P) 20.5 (A) 8.57 
Human soluble protein Jagged mRNA U77914 1063.3 (P) 109.4 (A) 8.57 
nidogen (enactin) BF940043 608.8 (P) 93.6 (A) 8.57 
Mitochondrial robosomal protein S15  NM_031280 132.4 (P) 11.3 (A) 8.57 
Proteasome (prosome, macropain) subunit, beta type, 1  NM_002793 1915.3 (P) 357.2 (A) 8.57 
Translocase of inner mitochondrial membrane 17  BC004439 128.3 (P) 7.6 (A) 9.19 
Microfibrillar-associated protein 2 , transcript variant 1 NM_017459 233.4 (P) 23.6 (A) 9.19 
Ribosomal protein L4 BC005817 7644.3 (P) 816.1 (P) 9.19 
Zinc finger protein 162  NM_004630 734.7 (P) 25.1 (A) 9.19 
Tyrosine 3-monoxygenasetryptophan BC003623 373.6 (P) 32.5 (A) 9.19 
Spinde pole body protein  NM_006322 215.4 (P) 12.6 (A) 9.19 
Glycogenin  NM_004130 407 (P) 30.8 (A) 9.85 
6-pyruvoyl-tetrahydropterin synthasedimerization cofactor   NM_000281 217.7 (P) 13.4 (A) 9.85 
Moesin  NM_002444 974.5 (P) 38.7 (A) 9.85 
Nuclear autoantigenic sperm protein (histone-binding) NM_002482 155.1 (P) 16.4 (A) 9.85 
Metalloprotease NM_007038 220.2 (P) 9.9 (A) 9.85 
KIAA0116 protein AL581473 822.7 (P) 45.9 (A) 9.85 
GAPDH M33197 5091.6 (P) 530.9 (A) 9.85 
Brain acid-soluble protein 1 NM_006317 7329.2 (P) 674 (P) 9.85 
HSPC177 NM_016410 310.9 (P) 30.8 (A) 9.85 
glyceraldehyde-3-phosphate dehydrogenase BF689355 9541.6 (P) 1048.9 (P) 9.85 
Latent transforming growh factor beta binding protein 3 NM_021070 377.9 (P) 39 (A) 9.85 
U6 snRNA-associated Sm-like protein LSm7 NM_016199 395.4 (P) 37 (A) 10.56 
GANP protein AJ010089 462.1 (P) 29.2 (A) 10.56 
McKusick-Kaufman syndrome protein NM_018848 533.2 (P) 20.9 (A) 10.56 
Clone image:3611719 BC003542 167 (P) 22.2 (A) 10.56 
Cyclin G1 BC000196 4919.8 (P) 480.8 (A) 10.56 
Microtubule associated protein  AI633566 402.3 (P) 44.9 (A) 10.56 
MM-1 beta AB055804 1917.7 (P) 106.5 (A) 10.56 
transketolase L12711 5334 (P) 535.8 (P) 10.56 
78 kDa gastrin-binding protein U04627 370.5 (P) 24.3 (A) 10.56 
SH3 domain binding glutamic acid-rich protein NM_007341 682.4 (P) 38.7 (A) 10.56 
EEF1 gamma NM_001404 9570.8 (P) 935.6 (A) 10.56 
phospholipase C, beta 3 BE305165 419.7 (P) 42.3 (A) 10.56 
Glutathione peroxidase 3 NM_002084 9749.5 (P) 594.4 (P) 11.31 
RD protein L03411 506.3 (P) 40.5 (A) 11.31 
Adaptor-related protein complex 2 NM_021575 225 (P) 19.3 (A) 11.31 
Phosphomannomutase 1 NM_002676 238.4 (P) 40.7 (A) 11.31 
Quinone oxidoreductase homolog BC000474 934 (P) 50.2 (A) 11.31 
HSPCO34 protein NM_016126 217.9 (P) 12.8 (A) 11.31 
Ornithin decarboxylase antizyme 1 AF090094 1153.7 (P) 36.4 (A) 11.31 
JM5 protein BC000464 327.3 (P) 30.5 (A) 12.13 
Retinitis pigmentosa 2 NM_006915 33.1 (P) 1.3 (A) 12.13 
Guanine nucleotide binding protein beta polypeptide 2-like 1 NM_006098 3013.5 (P) 315.4 (A) 12.13 
Cytidine deaminase NM_001785 324.7 (P) 23.4 (A) 12.13 
alpha-2-HS-glycoprotein BG538564 3032.1 (P) 152.1 (A) 12.13 
Ribosomal protein L11 NM_000975 4539.6 (P) 162.2 (A) 12.13 
L-iditol-2 dehydrogenase L29008 1540.6 (P) 93.4 (A) 12.13 
v-fos FBJ murine osteosarcoma viral oncogene homolog BC004490 508.5 (P) 17.2 (A) 12.13 
Crystallin beta B2 NM_000496 18394.2 (P) 1113.3 (P) 12.13 
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28S ribosomal RNA gene M27830 8810.6 (P) 639.5 (P) 12.13 
KIAA0230 gene D86983 300.7 (P) 19.7 (A) 12.13 
Clone 24461 AF070577 517.8 (P) 16.7 (A) 12.13 
MRJ gene for a member of the DNAJ protein family BC002446 244.5 (P) 19 (A) 13 
HMG box mRNA, 3 end cds. L07335 1053.5 (P) 80.1 (A) 13 
Beaded filament structural protein 2, phakinin  NM_003571 7986.8 (P) 454.7 (A) 13 
Adipose specific 2  NM_006829 822.3 (P) 103.3 (A) 13 
NADH dehydrogenase (ubiquitone) 1 alpha subcomplex, 7 NM_005001 537 (P) 24 (A) 13 
Histidyl-tRNA synthetase  NM_002109 1033.2 (P) 33.8 (A) 13 
Myristoylated alanine-rich protein kinase C substrate  NM_002356 203.9 (P) 22.5 (A) 13.93 
Id-2H complete cds. inhibitor of DNA binding 2 D13891 195.8 (P) 16.8 (A) 13.93 
Ancient ubiquitous protein 1 NM_012103 258.7 (P) 25.4 (A) 13.93 
solute carrier family 1 member 4 BF340083 5269.5 (P) 333.4 (P) 13.93 
signal peptidase complex N99438 789.3 (P) 51.9 (A) 13.93 
ID4 helix-loop-helix DNA binding protein  AL022726 210.3 (P) 16.1 (A) 14.93 
proteasome (prosome, macropain) inhibitor subunit 1 BG029917 426.1 (P) 28.4 (A) 14.93 
Cysteine-rich protein 1 (intestinal) NM_001311 583 (P) 31 (A) 14.93 
Epithelial membrane protein 1 NM_001423 154.2 (P) 10.6 (A) 14.93 
EST R06655 758.5 (P) 32 (A) 14.93 
Heterogeneous nuclear ribonucleoprotein AB NM_004499 638.7 (P) 33.7 (A) 14.93 
HIV-1 TAR RNA binding protein L22453 4646.4 (P) 263 (A) 14.93 
Calpain 4, small subunit (30K) NM_001749 866.5 (P) 44.7 (A) 16 
Archain 1 NM_001655 635.5 (P) 12.6 (A) 16 
RuvB (E coli homolog)-like 2 NM_006666 451.2 (P) 31.5 (A) 16 
peptidylprolyl isomerase B (cyclophilin B) NM_000942 741.1 (P) 24.4 (A) 17.15 
Beaded filament structural protein 1, filensin NM_001195 6597.1 (P) 185.7 (A) 17.15 
HSPC165 protein NM_014185 393.4 (P) 22.3 (A) 17.15 
chimerin (chimaerin) 1 BF339445 709.7 (P) 44.2 (A) 17.15 
Hypothetical protein FLJ11798 NM_024907 510.9 (P) 16.8 (A) 18.38 
Saposin proteins A-D M32221 554.2 (P) 25.1 (A) 18.38 
Hematopoietic stemprogenitor cells protein MDS032 NM_018467 335.2 (P) 25 (A) 19.7 
Eukaryotic translation elongtion factor 2  NM_001961 4841 (P) 138.5 (A) 21.11 
Lysyl oxidase-like 1 NM_005576 824.8 (P) 18.7 (A) 21.11 
transketolase BF696840 1557.5 (P) 27 (A) 22.63 
Alpha A crystallin U66584 10945.8 (P) 264.4 (P) 22.63 
Crystallin beta B3 NM_004076 2515.8 (P) 64.9 (A) 22.63 
glycoprotein M6A BF939489 360.8 (P) 19.6 (A) 24.25 
Growth arrest and DNA-damage-inducible, alpha NM_001924 1548.3 (P) 31 (A) 24.25 
pUb-R5 AB033605 867 (P) 30 (A) 24.25 
solute carrier family 25  member 6 AA916851 1736.5 (P) 20.8 (A) 25.99 
ribosomal protein, large, P0 AA555113 2885.2 (P) 73.5 (A) 27.86 
Lens intrinsic membrane protein 2  NM_030657 7106.4 (P) 144.3 (A) 27.86 
Crystallin beta A3 NM_005208 16082.8 (P) 582.6 (M) 27.86 
Microvascular endothelial differentiation gene 1 NM_012328 110.3 (P) 6.4 (A) 27.86 
Crystallin gamma D NM_006891 6226.2 (P) 204.5 (A) 29.86 
Ribosomal protein S9 NM_001013 5469.9 (P) 207.3 (A) 32 
Phosphoglycerate kinase S81916 477.3 (P) 23.8 (A) 42.22 
matrix Gla protein AI653730 546.9 (P) 14.5 (A) 42.22 
Intersectin short isoform AF114488 119.3 (P) 4.3 (A) 45.25 
Hypothetical protein PRO2577 NM_018630 133.3 (P) 6.8 (A) 45.25 
Lengsin NM_016571 2135 (P) 17.1 (A) 51.98 
Crystallin beta A2 NM_005209 14598.1 (P) 108.3 (A) 55.72 
Crystallin beta B1 NM_001887 7181.6 (P) 68.5 (A) 119.43 
Heat shock 27 kD protein 1 NM_001540 3620.6 (P) 28.2 (A) 128 
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Crystallin beta A4 NM_001886 17523.3 (P) 118.1 (A) 168.9 
     
     
"P"=Present-statistically greater than background intensity values     
"A"=Absent-not statistically different than background intensity 
values     
"M"=Marginal-possibly different than bacground intensity values     
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Control Genes shown in Figure 4    

    

Gene  Densitometry % Adjusted Volume  Densitometry % Adjusted Volume  Fold Change 

  for Normal Lens RNA for Cataractous Lens RNA in Cataracts 

    

αΒ−crystallin 21.62 17.52 Decreased 1.23 Fold 

Catalase 26.55 18.38 Decreased 1.44 Fold 

MTF-1 22.29 24.46 Increased 1.10 Fold 

    

    

Primary Confirmations (Figure 3A)     

    

Gene  Densitometry % Adjusted Volume  Densitometry % Adjusted Volume  Fold Change 

  for Normal Lens RNA for Cataractous Lens RNA in Cataracts 

    

Hsp27-1 72.35 27.65 Decreased 2.62 Fold 

αΑ−crystallin 78.27 21.73 Decreased 3.60 Fold 

RPL13a 60.37 39.63 Decreased 1.52 Fold 

Metallothionein IF 74.11 25.89 Decreased 2.86 Fold 

Metallothionein IH 86.92 13.08 Decreased 6.65 Fold 

Metallothionein IG 86.05 13.95 Decreased 6.17 Fold 

Glutathione Peroxidase 1 60.98 39.02 Decreased 1.56 Fold 

Na+/H+ Exchanger II 17.2 82.8 Increased 4.81 Fold 

Serine/Threonine Protein Kinase 40.96 59.04 Increased 1.44 Fold 

Na+/K+ ATPase 52.73 47.27 Decreased 1.12 Fold 

Secreted Apoptosis Related Protein 17.78 82.22 Increased 4.62 Fold 

Pleiotrophin 33.67 66.33 Increased 1.97 Fold 

E3-Ubiquitin Ligase 34.84 65.16 Increased 1.87 Fold 

    

    

Secondary Confirmations (Figure 3B)    

    

Gene  Densitometry % Adjusted Volume  Densitometry % Adjusted Volume   Fold Change 

  for Normal Lens RNA for Cataractous Lens RNA in Cataracts 

    

αΑ−crystallin 57.21 42.79 Decreased 1.34 Fold 

RPL13a 54.29 45.71 Decreased 1.19 Fold 

Metallothionein IF 67.16 32.84 Decreased 2.05 Fold 

Na+/H+ Exchanger II 6.99 93.01 Increased 13.31 Fold 

Serine/Threonine Protein Kinase 22.86 77.14 Increased 3.37 Fold 

Na+/K+ ATPase 2.03 97.97 Increased 48.26 Fold 

Pleiotrophin 14.78 85.22 Increased 5.77 Fold 

    

    

Tertiary Confirmations (Figure 4)    

    

Gene  Densitometry % Adjusted Volume  Densitometry % Adjusted Volume   Fold Change 

  for Normal Lens RNA for Cataractous Lens RNA in Cataracts 

    

HSP27-1 34.74 4.23 Decreased 8.21 Fold 

HSP27-2 20.49 15.69 Decreased 1.31 Fold 
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Table 4.  Individual functionally clustered genes 

    
INCREASED in CATARACT    
        

Category Gene Name Access. # Fold-change  

        

       

Biological Process       

        

Chromosome Organization       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 chondroitin sulfate proteoglycan 6 (bamacan) NM_005445 8.5742 

  heterochromatin protein homologue (HP1) NM_012117 4.0000 

Nuclear Organization       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 chondroitin sulfate proteoglycan 6 (bamacan) NM_005445 8.5742 

  heterochromatin protein homologue (HP1) NM_012117 4.0000 

Transcription/DNA-Dependent       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 Sjogren syndrome antigen B NM_003142 6.4980 

 zinc finger protein 161 NM_007146 6.9644 

 nuclear receptor interacting protein 1  NM_003489 7.4643 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

 small nuclear RNA activating complex NM_003082 6.9644 

 E3 ubiquitin ligase Smurf2 NM_022739 4.5948 

  homeo box A7 NM_006896 4.2871 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 ubinuclein 1 T70262 5.6569 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 
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  KIAA0876 protein AW237172 6.9644 

Transcription       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 Sjogren syndrome antigen B NM_003142 6.4980 

 nuclear phosphoprotein NM_007062 5.2780 

 zinc finger protein 161 NM_007146 6.9644 

 nuclear receptor interacting protein 1  NM_003489 7.4643 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

 small nuclear RNA activating complex NM_003082 6.9644 

 E3 ubiquitin ligase Smurf2 NM_022739 4.5948 

  homeo box A7 NM_006896 4.2871 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 ubinuclein 1 T70262 5.6569 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 

  KIAA0876 protein AW237172 6.9644 

Nucleic Acid Metabolism       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 Sjogren syndrome antigen B NM_003142 6.4980 

 nuclear phosphoprotein NM_007062 5.2780 

 zinc finger protein 161 NM_007146 6.9644 

 nuclear receptor interacting protein 1  NM_003489 7.4643 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 Nijmegen breakage syndrome 1 (nibrin) NM_002485 6.9644 

 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

 small nuclear RNA activating complex NM_003082 6.9644 

 E3 ubiquitin ligase Smurf2 NM_022739 4.5948 

  homeo box A7 NM_006896 4.2871 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 cisplatin resistance-associated overexpressed protein AW089673 4.2871 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 NS1-associated protein 1 AF037448 4.9246 
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 ubinuclein 1 T70262 5.6569 

 methyl-CpG binding domain protein 4 NM_003925 4.2871 

 heterochromatin protein homologue (HP1) NM_012117 4.0000 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 

 KIAA0876 protein AW237172 6.9644 

        

       

Molecular Function       

        

Nucleic Acid Binding       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 Sjogren syndrome antigen B NM_003142 6.4980 

 fragile X mental retardation, autosomal homolog 1 NM_005087 4.5948 

 zinc finger protein 161 NM_007146 6.9644 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 Nijmegen breakage syndrome 1 (nibrin) NM_002485 6.9644 

 ring finger protein 15 NM_006355 19.6983 

 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

  homeo box A7 NM_006896 4.2871 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 lymphoid blast crisis oncogene NM_006738 4.2871 

 eukaryotic translation initiation factor 4 gamma AF104913 6.4980 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 NS1-associated protein 1 AF037448 4.9246 

 ubinuclein 1 T70262 5.6569 

 methyl-CpG binding domain protein 4 NM_003925 4.2871 

 heterochromatin protein homologue (HP1) NM_012117 4.0000 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 

  KIAA0876 protein AW237172 6.9644 

Ligand Binding or Carrier       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 Sjogren syndrome antigen B NM_003142 6.4980 

 ATPase, Na+K+ transporting, beta 1 BC000006 8.0000 

 fragile X mental retardation, autosomal homolog 1 NM_005087 4.5948 
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 RAN binding protein 2 NM_006267 4.5948 

 adducin 3 (gamma) NM_019903 6.0629 

 KIAA0494 gene product NM_014774 17.1484 

 SEC14 NM_003003 4.9246 

 copine III NM_003909 6.9644 

 zinc finger protein 161 NM_007146 6.9644 

 nuclear receptor interacting protein 1 NM_003489 7.4643 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 glutathione peroxidase 2 NM_002083 8.0000 

 Nijmegen breakage syndrome 1 (nibrin) NM_002485 6.9644 

 ring finger protein 15 NM_006355 19.6983 

 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

 Wiskott-Aldrich syndrome-like NM_003941 14.9285 

  homeo box A7 NM_006896 4.2871 

 neurotrophic tyrosine kinase, receptor, type 2 NM_006180 4.0000 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 lymphoid blast crisis oncogene NM_006738 4.2871 

 eukaryotic translation initiation factor 4 gamma AF104913 6.4980 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 NS1-associated protein 1 AF037448 4.9246 

 ubinuclein 1 T70262 5.6569 

 chondroitin sulfate proteoglycan 6 (bamacan) NM_005445 8.5742 

 pleiotrophin M57399 7.4643 

 methyl-CpG binding domain protein 4 NM_003925 4.2871 

 heterochromatin protein homologue (HP1) NM_012117 4.0000 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 

 KIAA0876 protein AW237172 6.9644 

 KIAA0594 protein AW183677 9.1896 

 Ser-Thr protein kinase NM_003607 6.4980 

  calcium channel, voltage-dependent, PQ type, alpha 1A AA769818 4.9246 

DNA Binding       

 high-mobility group (nonhistone chromosomal) protein 1 NM_002128 4.5948 

 zinc finger protein 161 NM_007146 6.9644 

 cofactor required for Sp1 transcriptional activation, subunit 2 NM_004229 16.0000 

 Nijmegen breakage syndrome 1 (nibrin) NM_002485 6.9644 
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 transcription termination factor, RNA polymerase I NM_007344 4.0000 

 retinoblastoma-binding protein 1 (RBBP1) NM_002892 4.9246 

 inhibitor of growth family, member 3 NM_019071 4.2871 

  homeo box A7 NM_006896 4.2871 

 nuclear factor of activated T-cells 5 NM_006599 4.2871 

 alpha thalassemiamental retardation syndrome X-linked NM_000489 5.6569 

 ubinuclein 1 T70262 5.6569 

 methyl-CpG binding domain protein 4 NM_003925 4.2871 

 heterochromatin protein homologue (HP1) NM_012117 4.0000 

 erythroid-specific transcription factor NM_006563 5.2780 

 myeloidlymphoid or mixed-lineage leukemia NM_005933 19.6983 

  KIAA0876 protein AW237172 6.9644 

 

Decreased in Cataract     

     

Category Gene Name Access. # Fold-Change 

        

       

Biological Process       

        

RNA Splicing       

 small nuclear ribonucleoprotein D2 polypeptide  NM_004597 4.5948 

 splicing factor, arginineserine-rich 9 NM_003769 6.0629 

 small nuclear ribonucleoprotein D3 polypeptide NM_004175 4.5948 

  U6 snRNA-associated Sm-like protein LSm7 NM_016199 10.5561 

 putative mitochondrial outer membrane protein import receptor AB019219 4.5948 

  SMX5-like protein  AF196468 5.6569 

Protein Biosynthesis       

 eukaryotic translation initiation factor 3, subunit 7 NM_003753 4.9246 

 eukaryotic translation elongation factor 1 gamma NM_001404 10.5561 

 poly(A)-binding protein, cytoplasmic 4 NM_003819 6.9644 

 threonyl-tRNA synthetase NM_003191 6.0629 

  eukaryotic translation initiation factor 4A, isoform 1  NM_001416 4.2871 

 eukaryotic translation initiation factor 2B, subunit 1 NM_001414 6.0629 

 heat shock 27kD protein 1  NM_001540 128.0000 

 SUI1 isolog  AF083441 4.5948 

 histidyl-tRNA synthetase  NM_002109 12.9960 
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 eukaryotic translation elongation factor 1 delta NM_001960 6.4980 

 growth arrest and DNA-damage-inducible, alpha NM_001924 24.2515 

 eukaryotic translation elongation factor 2 NM_001961 21.1121 

 ribosomal protein, large, P0 BC003655 4.5948 

 eukaryotic translation initiation factor 3, subunit 4 BC000733 8.0000 

 translation initiation factor 6  AF022229 4.0000 

       

        

Protein Synthesis Elongation       

 eukaryotic translation elongation factor 1 gamma NM_001404 10.5561 

 eukaryotic translation elongation factor 1 delta NM_001960 6.4980 

 eukaryotic translation elongation factor 2 NM_001961 21.1121 

  ribosomal protein, large, P0 BC003655 4.5948 

Protein Synthesis Initiation       

  eukaryotic translation initiation factor 4A, isoform 1  NM_001416 4.2871 

 eukaryotic translation initiation factor 2B, subunit 1 NM_001414 6.0629 

 SUI1 isolog  AF083441 4.5948 

  translation initiation factor 6  AF022229 4.0000 

Macromolecule Biosynthesis       

 eukaryotic translation initiation factor 3, subunit 7 NM_003753 4.9246 

 eukaryotic translation elongation factor 1 gamma NM_001404 10.5561 

 poly(A)-binding protein, cytoplasmic 4 NM_003819 6.9644 

 threonyl-tRNA synthetase NM_003191 6.0629 

  eukaryotic translation initiation factor 4A, isoform 1  NM_001416 4.2871 

 eukaryotic translation initiation factor 2B, subunit 1 NM_001414 6.0629 

 heat shock 27kD protein 1  NM_001540 128.0000 

 SUI1 isolog  AF083441 4.5948 

 histidyl-tRNA synthetase  NM_002109 12.9960 

 eukaryotic translation elongation factor 1 delta NM_001960 6.4980 

 growth arrest and DNA-damage-inducible, alpha NM_001924 24.2515 

 eukaryotic translation elongation factor 2 NM_001961 21.1121 

 ribosomal protein, large, P0 BC003655 4.5948 

 eukaryotic translation initiation factor 3, subunit 4 BC000733 8.0000 

  translation initiation factor 6  AF022229 4.0000 

Amine Biosynthesis       

 ornithine decarboxylase 1 NM_002539 4.9246 

 antizyme inhibitor NM_015878 6.9644 

  phosphatidylethanolamine N-methyltransferase NM_007169 6.0629 
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Peroxidase Reaction       

 glutathione peroxidae 1 (GPX1) NM_000581 4.9246 

 glutathione peroxidase 4 (phospholipid hydroperoxidase) NM_002085 4.2871 

 glutathione peroxidase 3 (GPX3) NM_002084 11.3137 

  KIAA0230 gene D86983 12.1257 

Microtubule-Based Process       

 microtubule-associated protein, RPEB family, member 1 AI633566 10.5561 

 GTP binding protein AF054183 4.9246 

 spindle pole body protein (GCP3) NM_006322 9.1896 

 microtubule-associated protein like echinoderm EMAP NM_012155 4.9246 

 retinitis pigmentosa 2  NM_006915 12.1257 

 microtubule-associated proteins 1A1B light chain 3  AF183417 5.6569 

 tubulin, beta, 2 BC004188 6.0629 

  Similar to tubulin, beta, 4 BC002654 7.4643 

Organelle Organization        

 microtubule-associated protein, RPEB family, member 1 AI633566 10.5561 

 GTP binding protein AF054183 4.9246 

 saposin proteins A-D M32221 18.3800 

 peroxisomal farnesylated protein  NM_002857 4.0000 

 translocase of inner mitochondrial membrane 17 BC004439 9.1896 

 spindle pole body protein (GCP3) NM_006322 9.1896 

 microtubule-associated protein like echinoderm EMAP NM_012155 4.9246 

 retinitis pigmentosa 2  NM_006915 12.1257 

 microtubule-associated proteins 1A1B light chain 3  AF183417 5.6569 

 tubulin, beta, 2 BC004188 6.0629 

  Similar to tubulin, beta, 4 BC002654 7.4643 

Cytoskeleton Organization        

 microtubule-associated protein, RPEB family, member 1 AI633566 10.5561 

 GTP binding protein AF054183 4.9246 

 spindle pole body protein (GCP3) NM_006322 9.1896 

 microtubule-associated protein like echinoderm EMAP NM_012155 4.9246 

 retinitis pigmentosa 2  NM_006915 12.1257 

 microtubule-associated proteins 1A1B light chain 3  AF183417 5.6569 

 tubulin, beta, 2 BC004188 6.0629 

  Similar to tubulin, beta, 4 BC002654 7.4643 

Temperature Response       

 isolate Liv chaperone protein HSP90 beta  AF275719 4.9246 

 DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 6.4980 
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 myeloid cell leukemia sequence 1 (BCL2-related) AI275690 4.0000 

 heat shock 70kD protein 1A  NM_005345 4.0000 

 cold shock domain protein A  NM_003651 5.6569 

 heat shock 27kD protein 1 NM_001540 128.0000 

 heat shock 70kD protein 1B  NM_005346 5.6569 

 heat shock 27kD protein 2 NM_001541 5.2780 

        

Heat Shock Response       

 isolate Liv chaperone protein HSP90 beta  AF275719 4.9246 

 DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 6.4980 

 myeloid cell leukemia sequence 1 (BCL2-related) AI275690 4.0000 

 heat shock 70kD protein 1A  NM_005345 4.0000 

 heat shock 27kD protein 1 NM_001540 128.0000 

 heat shock 70kD protein 1B  NM_005346 5.6569 

  heat shock 27kD protein 2 NM_001541 5.2780 

Vision       

 L-iditol-2 dehydrogenase L29008 12.1257 

 EGF-containing fibulin-like extracellular matrix protein 1 AI826799  4.9246 

 fibrillin 1 NM_000138 5.2780 

 microtubule-associated protein like echinoderm EMAP NM_012155 4.9246 

 retinitis pigmentosa 2  NM_006915 12.1257 

 beta B2 crystallin NM_000496 6.4980 

 beta A4 crystallin NM_001886 168.8970 

 phakinin, beaded filament structural protein 2 NM_003571 12.9960 

 gamma D crystallin NM_006891 29.8571 

  beta B3 crystallin NM_004076 22.6274 

Response to External Stimulus       

 isolate Liv chaperone protein HSP90 beta  AF275719 4.9246 

 DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 6.4980 

 myeloid cell leukemia sequence 1 (BCL2-related) AI275690 4.0000 

 heat shock 70kD protein 1A  NM_005345 4.0000 

 poly(A)-binding protein, cytoplasmic 4 NM_003819 6.9644 

 cold shock domain protein A  NM_003651 5.6569 

 interferon induced transmembrane protein 2 NM_006435 4.5948 

 glutathione peroxidase 3 (GPX3) NM_002084 11.3137 

 L-iditol-2 dehydrogenase L29008 12.1257 

 heat shock 27kD protein 1 NM_001540 128.0000 

 EGF-containing fibulin-like extracellular matrix protein 1 AI826799  4.9246 
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 beta-2-microglobulin  NM_004048 4.2871 

 heat shock 70kD protein 1B  NM_005346 5.6569 

 interferon gamma receptor 1  NM_000416 4.0000 

 fibrillin 1 NM_000138 5.2780 

 growth arrest and DNA-damage-inducible, alpha NM_001924 24.2515 

 carbohydrate (chondroitin 6keratan) sulfotransferase 2 NM_004267 4.5948 

 microtubule-associated protein like echinoderm EMAP NM_012155 4.9246 

  cysteine-rich protein 1 NM_001311 14.9285 

 retinitis pigmentosa 2  NM_006915 12.1257 

 heat shock 27kD protein 2 NM_001541 5.2780 

 beta B2 crystallin NM_000496 6.4980 

 beta A4 crystallin NM_001886 168.8970 

 phakinin, beaded filament structural protein 2 NM_003571 12.9960 

 gamma D crystallin NM_006891 29.8571 

 beta B3 crystallin NM_004076 22.6274 

 CD24 antigen BG327863 4.9246 

 complement cytolysis inhibitor M25915 4.2871 

  pre-mRNA splicing factor 2 p32 subunit L04636 7.4643 

 v-fos FBJ murine osteosarcoma viral oncogene homolog BC004490 12.1257 

  KIAA0230 gene D86983 12.1257 

 monocyte chemotactic protein  S69738 6.4980 

        

      

       

Molecular Function       

        

U6 snRNA Binding       

 U6 snRNA-associated Sm-like protein LSm7 NM_016199 10.5561 

  SMX5-like protein  AF196468 5.6569 

Pre-mRNA Splicing Factor       

 small nuclear ribonucleoprotein D2 polypeptide  NM_004597 4.5948 

 splicing factor, arginineserine-rich 9  NM_003769 6.0629 

 small nuclear ribonucleoprotein D3 polypeptide NM_004175 4.5948 

  U6 snRNA-associated Sm-like protein LSm7 NM_016199 10.5561 

  putative mitochondrial outer membrane protein import receptor AB019219 4.5948 

   U6 snRNA-associated Sm-like protein AF196468 5.6569 

mRNA Binding       

 small nuclear ribonucleoprotein D2 polypeptide  NM_004597 4.5948 
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 poly(A)-binding protein, cytoplasmic 4  NM_003819 6.9644 

 eukaryotic translation initiation factor 4A, isoform 1 NM_001416 4.2871 

 splicing factor, arginineserine-rich 9  NM_003769 6.0629 

 small nuclear ribonucleoprotein D3 polypeptide NM_004175 4.5948 

  U6 snRNA-associated Sm-like protein LSm7 NM_016199 10.5561 

  putative mitochondrial outer membrane protein import receptor AB019219 4.5948 

   U6 snRNA-associated Sm-like protein AF196468 5.6569 

Proteasome Endopeptidase       

 proteasome (prosome,macropain)subunit,beta type, 1 NM_002799 6.0629 

 proteasome (prosome,macropain)subunit,beta type, 1 NM_002793 8.5742 

 proteasome (prosome,macropain)subunit,alpa type, 3 NM_002788 5.6569 

  proteasome (prosome,macropain)subunit,beta type, 4 NM_002796 5.2780 

Translation Factor       

 eukaryotic translation initiation factor 3, subunit 7 NM_003753 4.9246 

 eukaryotic translation elongation factor 1 gamma NM_001404 10.5561 

 eukaryotic translation initiation factor 4A, isoform 1 NM_001416 4.2871 

 eukaryotic translation initiation factor 2B, subunit 1  NM_001414 6.0629 

 SUI1 isolog AF083441 4.5948 

 eukaryotic translation elongation factor 1 delta NM_001960 6.4980 

 eukaryotic translation elongation factor 2  NM_001961 21.1121 

 eukaryotic translation initiation factor 3, subunit 4 BC000733 8.0000 

  translation initiation factor 6 AF022229 4.0000 

Selenium Binding       

 glutathione peroxidase 1 NM_000581 4.9246 

 glutathione peroxidase 4 (phospholipid hydroperoxidase) NM_002085 4.2871 

 selenoprotein W, 1 (SEPW1) NM_003009 6.4980 

  glutathione peroxidase 3 (GPX3) NM_002084 11.3137 

Alcohol Dehydrogenase       

 L-iditol-2 dehydrogenase L29008 12.1257 

  quinone oxidoreductase homolog BC000474 11.3137 

  beta3-Galactosyltransferase AL031228 6.0629 

Heat Shock Protein       

 isolate Liv chaperone protein HSP90 beta  AF275719 4.9246 

 DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 6.4980 

 heat shock 70kD protein 1A  NM_005345 4.0000 

 heat shock 27kD protein 1 NM_001540 128.0000 

 heat shock 70kD protein 1B  NM_005346 5.6569 

  heat shock 27kD protein 2 NM_001541 5.2780 
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Oxidoreductase       

 glutathione peoxidase 1 (GPX1) NM_000581 4.9246 

 glutathione peroxidase 4 (phospholipid hydroperoxidase) NM_002085 4.2871 

 selenoprotein W, 1 (SEPW1) NM_003009 6.4980 

 glutathione peroxidase 3 (GPX3) NM_002084 11.3137 

 L-iditol-2 dehydrogenase L29008 12.1257 

 inosine monophosphate dehydrogenase 2 (IMPDH2) NM_000884 5.2780 

 biliverdin reductase B(flavin reductase (NADPH)) NM_000713 5.6569 

 3-hydroxy-3-methylglutaryl-Coenzyme A reductase M11058 5.6569 

 NADH dehydroxygenase (ubiquinone) 1 alpha subcomplex, 7 NM_005001 12.9960 

 NADH dehydroxygenase (ubiquinone) 1 beta subcomplex, 7 NM_004146 4.5948 

 lysyl oxidase-like 1 (LOXL1) NM_005576 21.1121 

 4-hydroxyphenylpyruvate dioxygenase NM_002150 5.2780 

 78kDa gastrin-binding protein U04627 10.5561 

 carbonyl reductase 1 BC002511 5.2780 

 quinone oxidoreductase homolog BC000474 11.3137 

 melenoma associated gene D86983 12.1257 

 aldehyde dehydrogenase 1 (ALDH1) AF003341 4.0000 

  contains BING5 gene, the gene for beta3-galactosyltransferase) AL031228 6.0629 

Glutathione Peroxidase       

 glutathione peroxidae 1 (GPX1) NM_000581 4.9246 

 glutathione peroxidase 4 (phospholipid hydroperoxidase) NM_002085 4.2871 

  glutathione peroxidase 3 (GPX3) NM_002084 11.3137 

Chaperone       

 isolate Liv chaperone protein HSP90 beta  AF275719 4.9246 

 DnaJ (Hsp40) homolog, subfamily B, member 1 BG537255 6.4980 

 heat shock 70kD protein 1A  NM_005345 4.0000 

 chaperonin containing TCP1, subunit 7 NM_006429 4.9246 

 peptidylprolyl isomerase B (cyclophilin B) NM_000942 17.1484 

 RuvB NM_006666 16.0000 

 heat shock 27kD protein 1 NM_001540 128.0000 

 tetratricopeptide repeat domain 2 NM_003315 6.9644 

 heat shock 70kD protein 1B  NM_005346 5.6569 

 microvascular endothelial differentiation gene 1 NM_012328 27.8576 

 retinitis pigmentosa 2  NM_006915 12.1257 

 heat shock 27kD protein 2 NM_001541 5.2780 

  prefoldin 5 NM_002624 6.9644 

Structural Constituent of Lens       
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 filensin, beaded filament structural protein 1 NM_001195 17.1484 

 beta B2 crystallin NM_000496 6.4980 

 beta B2 crystallin NM_000496 12.1257 

 beta A4 crystallin NM_001886 168.8970 

 phakinin, beaded filament structural protein 2 NM_003571 12.9960 

 gamma D crystallin NM_006891 29.8571 

 beta B3 crystallin NM_004076 22.6274 

  crystallin, gamma B NM_005210 6.4980 

Structural Molecule       

 moesin  NM_002444 9.8492 

 gelsolin NM_000177 4.2871 

 keratin 19 NM_002276 4.9246 

 nidogen (enactin) BF940043 8.5742 

 fibrillin 1 NM_000138 5.2780 

 spindle pole body protein  NM_006322 9.1896 

 growth arrest and DNA-damage-inducible, alpha NM_001924 24.2515 

 catenin (cadherin-associated protein), alpha 2 NM_004389 6.9644 

 filensin, beaded filament structural protein 1 NM_001195 17.1484 

 beta B2 crystallin NM_000496 6.4980 

 beta B2 crystallin NM_000496 12.1257 

 beta A4 crystallin NM_001886 168.8970 

 phakinin, beaded filament structural protein 2 NM_003571 12.9960 

 gamma D crystallin NM_006891 29.8571 

 beta B3 crystallin NM_004076 22.6274 

 gamma B crystallin  NM_005210 6.4980 

 alpha II spectrin  U83867 8.0000 

  ribosomal protein, large, P0 BC003655 4.5948 

 tubulin, beta, 2 BC004188 6.0629 

 Similar to tubulin, beta, 4 BC002654 7.4643 

 tropomyosin M19267 4.0000 

  amyloid beta (A4) X06989 4.0000 
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Figure 1.  Genes increased 2-fold or greater between cataract and clear lenses.  The total 

number of genes included in each fold change category is indicated.  Percentages 

indicated the total number of genes in each category relative to the total number of 

increased genes (412) on the chip.   
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Figure 2.  Genes decreased 2-fold or greater between cataract and clear lenses.  The total 

number of genes included in each fold change category is indicated.  Percentages 

indicated the total number of genes in each category relative to the total number of 

decreased genes (919) on the chip.   
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Figure 3.  RT-PCR confirmation of gene expression differences detected by microarray 

hybridization between cataract (C) and clear (N) lens epithelia.  The expression levels of 

indicated genes were confirmed by RT-PCR.  A). Genes examined using the same 

cataract and clear lens RNAs analyzed by microarray hybridization.  B). Genes examined 

using separately prepared cataract and clear lens RNA samples. 
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Figure 4.  RT-PCR confirmation of gene expression differences for A. HSP27-1 and -2 

and B. 3 control genes whose expression levels should be equal between cataract (C) and 

clear (N) lens epithelia.  The total amount of RNA (ng) used in each reaction is indicated. 
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Figure 5.  Functional cluster analysis of genes involved in biological processes which 

have increased expression levels in cataract vs. clear lenses.  Functional cluster analysis 

of genes involved in biological processes which have increased expression levels in 

cataract compared to clear lenses.  The specific sub-categories of genes determined to be 

significantly altered using the statistical clustering program, EASE, are indicated.  

Percentages indicate the number of altered genes in each sub-category relative to their 

total representation on the microarray.  Colors denote the approximate cellular location 

for which the genes in each sub-category function ranging from the nucleus to the plasma 

membrane (red to violet).  Individual genes in each category are listed in Table 4.  Pie 

piece size approximates the number of changed genes in each sub-category. 
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Figure 6.  Functional cluster analysis of genes involved in molecular functions which 

have increased expression levels in cataract vs. clear lenses.  Functional cluster analysis 

of genes involved in molecular functions which have increased expression levels in 

cataract compared to clear lenses.  The specific sub-categories of genes determined to be 

significantly altered using the statistical clustering program, EASE, are indicated.  

Percentages indicate the number of altered genes in each sub-category relative to their 

total representation on the microarray.  Colors denote the approximate cellular location 

for which the genes in each sub-category function ranging from the nucleus to the plasma 

membrane (red to violet).  Individual genes in each category are listed in Table 4.  Pie 

piece size approximates the number of changed genes in each sub-category. 
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Figure 7.  Functional cluster analysis of genes involved in biological processes which 

have decreased expression levels in cataract vs. clear lenses.  Functional cluster analysis 

of genes involved in biological processes which have decreased expression levels in 

cataract compared to clear lenses.  The specific sub-categories of genes determined to be 

significantly altered using the statistical clustering program, EASE, are indicated.  

Percentages indicate the number of altered genes in each sub-category relative to their 

total representation on the microarray.  Colors denote the approximate cellular location 

for which the genes in each sub-category function ranging from the nucleus to the plasma 

membrane (red to violet).  Individual genes in each category are listed in Table 4.  Pie 

piece size approximates the number of changed genes in each sub-category. 
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Figure 8.  Functional cluster analysis of genes involved in molecular functions which 

have decreased expression levels in cataract vs. clear lenses.  Functional cluster analysis 

of genes involved in molecular functions which have decreased expression levels in 

cataract compared to clear lenses.  The specific sub-categories of genes determined to be 

significantly altered using the statistical clustering program, EASE, are indicated.  

Percentages indicate the number of altered genes in each sub-category relative to their 

total representation on the microarray.  Colors denote the approximate cellular location 

for which the genes in each sub-category function ranging from the nucleus to the plasma 

membrane (red to violet).  Individual genes in each category are listed in Table 4.  Pie 

piece size approximates the number of changed genes in each sub-category. 
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DISCUSSION 

 

 In the present study, we have compared the relative expression levels of more 

than half of the genes predicted to comprise the human genome between age-matched 

cataract and clear human lenses, confirmed the accuracy of the data set by semi-

quantitative RT-PCR and clustered the differentially expressed genes into functional 

categories.  This analysis has identified over 1300 genes that are altered in cataract 

relative to clear lenses.  Of these, 74 are increased and 241 are decreased at the 5-fold or 

greater level between cataract and clear lenses.  Although limitations in obtaining 

sufficient numbers of cataract and clear lenses preclude the extensive analysis of 

individual genes at the mRNA and protein levels, we estimate that the trends in gene 

expression detected in the microarray procedure are approximately 84% accurate based 

on semi-quantitative RT-PCR using separately isolated RNA populations.  Although we 

cannot rule out the possibility that temporal and/or spatial differences between cataract 

and clear lenses may influence the results of the present study, we are confident that the 

differences in gene expression detected are truly cataract-specific since the lenses were 

approximately age-matched (cataract approximately 70.2 years and clear lenses 

approximately 61.5 years), controlled for the proportion of males and females between 

the two samples (approximately 45% male), used within 24 hours post-mortem and 

carefully dissected for central epithelium (2-3mm cataract and 6-8mm clear).  The 

cataracts examined in this study were mostly mixed and nuclear (70% mixed, 20% 

nuclear, 5% cortical and 2% posterior sub-capsular) therefore, the effects in gene 

expression detected in the present survey most likely reflect general gene expression 

changes associated with age-related cataract and are unlikely to be related to specific 

types of cataracts except for possibly nuclear.  Large numbers of specific types of 
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cataracts will need to be collected in order to analyze type-specific gene expression 

patterns.  However, it is important to note that many of the same genes and their 

corresponding magnitude changes detected in the present study correlate almost exactly 

with the gene expression differences and magnitude changes detected between cataract 

epithelia and clear lens epithelia using an entirely different population of human subjects 

as well as a different type of hybridization screening (Ruotolo et al 2003).  This 

complementary study provides great confidence in the gene expression differences 

detected in the present survey.    

   The present study provides evidence for multiple novel differences in gene 

expression between cataract and clear human lenses.  Although descriptions of all of the 

individual genes that exhibit altered expression are too cumbersome to report, and many 

of the detected gene expression differences involve ESTs with no known function, some 

observations can be made.  The majority of genes whose expression levels are altered in 

cataract exhibit decreased expression.  These genes function in diverse processes 

including protein synthesis, oxidative stress, membrane transport, structural proteins, 

chaperones and cell cycle control proteins.  Many of these processes represent metabolic 

systems designed to preserve lens homeostasis and their decreased expression may reflect 

the inability of the lens to maintain its internal environment in the presence of stress.  

Specific examples of individual genes that exhibit decreased expression in cataract 

include: multiple ribosomal subunits involved in protein synthesis including large 

subunits 21, 15, 13a and 7a previously shown to be decreased in cataract relative to clear 

human lenses (Zhang, Hawse, Huang, Sheets, Miller, Horwitz, and Kantorow 2002); 

selenoprotein W1, a glutathione dependant antioxidant known to protect lung cells 

against H2O2 cytotoxicity (Jeong et al 2002) that could play a role in defending the lens 
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against oxidative damage; Na/K ATPase, a membrane transporter likely to be critical for 

osmotic regulation of the lens, whose proteins levels have previously been shown to be 

decreased in lens epithelia isolated from human age-related cataract (Tseng and Tang 

1999); glutathione peroxidases 1, 3 and 4, important oxidative stress enzymes that are 

likely to play major roles in lens protection and maintenance (Reddy et al 2001); ferritin, 

which has been linked to hereditary hyperferritinemia-cataract syndrome (Martin et al 

1998); multiple crystallins and other lens structural components; Hsp70, a key ATPase 

activated chaperone (Haslbeck 2002); Hsp27-1, a small heat-shock protein likely to be 

important for lens protection (Ganea 2001); Hsp27-2, a small heat shock protein closely 

related to alphaB-crystallin (Iwaki et al 1997) which may also be important for lens 

protection and alphaA-crystallin that, in addition to its structural role in the lens, is also a 

small heat shock protein that can prevent protein aggregation in the lens (Horwitz 1992).   

The microarray data showing 21 large and small ribosomal subunit transcripts that 

have decreased expression levels of 2-fold or greater in cataracts is consistent with 

differential display results showing that 4 of the large ribosomal subunit transcripts are 

decreased in cataractous lenses (Zhang, Hawse, Huang, Sheets, Miller, Horwitz, and 

Kantorow 2002).  This process reflects a generalized decrease in protein synthesis in 

cataractous lens epithelial cells.   

We also found significant decreases in genes associated with oxidative stress such 

as glutathione peroxidase, the metallothionein I genes, quinone oxidoreductase and 

transketolase.  It has previously been demonstrated that glutathione peroxidase-1- 

deficient mice develop cataracts at an early age (Reddy, Giblin, Lin, Dang, Unakar, 

Musch, Boyle, Takemoto, Ho, Knoernschild, Juenemann, and Lutjen-Drecoll 2001) and 

that the levels of glutathione peroxidase are significantly decreased in the plasma of 



 107

patients with senile cataracts (Xue et al 1996).  It is also known that oxidative stress 

occurs when the quinone oxidoreductase gene is damaged resulting in the production of 

oxygen radicals (Pitkanen and Robinson 1996).  The down regulation of the quinone 

oxidoreductase gene would also result in the same outcome, an increase in the overall 

production of oxygen radicals.  Others have shown that the loss of transketolase function, 

an enzyme that catalyzes two of three reactions for entry into the pentose-phosphate 

pathway, a major source of chemical reducing power, results in lens fiber cell 

degeneration (Frederikse et al 1999).  

Another major functional category exhibiting decreased gene expression in 

cataracts is the small heat shock proteins/chaperones.  Small heat shock proteins (sHSPs) 

are a large family of proteins that, unlike the large HSPs which are mainly involved in 

protein folding, play an important role in protecting organisms against stress (Ganea 

2001).  This study specifically found rather large decreases in many of the crystallin 

proteins as well as HSP27.  Mice lacking the αA-crystallin gene develop cataracts at an 

early age (Brady et al 1997b) and a mis-sense mutation in the gene has been genetically 

linked to one form of autosomal dominant congenital cataracts in mice (Cobb and Petrash 

2000) and humans (Litt et al 1998; Pras et al 2000).  

Many of the genes encoding structural lens proteins also exhibited decreased 

expression in cataract.  This includes many of the β- and γ-crystallins which are thought 

to be essential for lens clarity and refraction.  Indeed, mutations in β-crystallins have also 

been related to cataract formation, including a nonsense mutation in βB1-crystallin 

(Mackay et al 2002) and a mutation in the βB2-crystallin gene (Graw et al 2001).  Two 

other genes involved in lens structure are filensin and phakinin.  These two genes 

together make up the lens-specific intermediate filament known as the Beaded Filament 
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(Gounari et al 1997).  It has been shown that the filensin protein is absent in lenses that 

have posterior sub-capsular cataracts (Hess et al 1998).       

One additional functional category exhibiting decreased expression in cataractous 

lenses is the cyclins.  This includes cyclin D1, cyclin G1 and BCL-1.  Although there are 

very few reports examining the effects of these gene in the lens or their effects, if any, on 

cataract formation, one group of researchers has demonstrated that overexpression of 

cyclin G1 in fetal human lens epithelial cells results in an increased incidence of 

apoptosis (Kampmeier et al 2000). 

Fewer genes exhibited increased expression in cataract.  These genes function in 

processes as diverse as transcriptional control, ion transport, cytoplasmic transport, ion 

regulation, Ca2+ homeostasis, protein salvaging pathways and extracellular matrix 

interactions.  Many of the pathways that exhibit increased expression in cataract are also 

associated with transcriptional processes that may represent attempts by the lens to 

compensate for stresses related to cataract.  Specific examples of individual genes 

include: multiple zinc finger proteins, important for transcriptional regulation, Na/H 

exchangers, which play key roles in regulating intracellular pH levels (Sangan et al 

2002); multiple calcium transporters and chloride channels, important for the 

maintenance of cellular homeostasis; osteonectin, a calcium-binding protein that 

functions in the regulation of cell growth (Sage et al 1995) and adducin, a member of a 

gene family encoding cytoskeletal proteins (Gilligan et al 2002).    

 According to the EASE analysis, functionally related groups of genes that exhibit 

overall trends of increased expression in cataracts include peptidyl-prolyl cis-trans 

isomerases.  Twenty five percent of cyclophilin-like peptidyl-prolyl cis-trans isomerases 

present on the microarray exhibited increased gene expression in cataract including RAN 
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binding protein.  The peptidyl-prolyl cis-trans isomerases catalyze the cis-trans 

isomerization of prolyl-peptide bonds (Rassow and Pfanner 1996; Rudd et al 1995; 

Schmid 1993).  Some peptidyl-prolyl cis-trans isomerases may also possess chaperone 

activity by binding to and inhibiting the formation of misfolded protein aggregates 

(Freskgard et al 1992; Lilie et al 1993; Rinfret et al 1994).  It is possible that these 

isomerases are increased in cataracts in an attempt to prevent the aggregation of proteins 

in the lens which occur during cataract formation.  Splice variants of a new class of 

cyclophilin-related proteins, types I and II, have been isolated (Ferreira PA 1995; Ferreira 

et al 1995) and it was found that the type II isoform is identical to Ran-binding protein 2 

(RanBP2) (Wu et al 1995; Yokoyama et al 1995).        

Ran-binding protein 2 is a component of the nuclear pore complex which 

mediates macromolecular transport between the nucleus and the cytoplasm of the cell and 

serves the cell�s requirement for bi-directional, selective, diverse and high-volume 

transport between these two compartments (Walther et al 2002).  Thirty to 40 different 

proteins, called nucleoporins, have been identified as components of the nuclear pore 

complex (Rout and Aitchison 2000).  RanBP2, which exhibited increased expression in 

cataracts, is the largest nucleoporin and has been localized to the cytoplasmic filaments of 

the nuclear pore complex (Wilken et al 1995).  RanBP1, another cytosolic protein closely 

related to RanBP2, is also involved in nuclear transport (Gorlich and Kutay 1999) and 

exhibits increased expression in cataracts. 

In addition to cytoplasmic transport, many genes associated with ionic transport 

also exhibit increased expression in cataracts.  One gene in particular, cullin 5, which 

shares 96% homology with vasopressin-activated Ca2+-mobilizing receptor, is increased 

in cataract.  Although its specific function is currently unknown, it is likely to be 
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involved in the Ca2+ and cAMP dependent cell signaling pathways (Burnatowska-Hledin 

et al 2000).  Organ culture studies of the bovine lens demonstrate that a marked decrease 

in protein synthesis and a net leakage of proteins is strongly associated with an increase 

in calcium concentration (Duncan and Jacob 1984).  The activity of Ca2+-ATPase has 

also been shown to be reduced by 50% in the membranes of lens epithelia isolated from 

cataractous lenses compared to clear human lenses (Paterson et al 1997).  Oxidative stress 

has also been demonstrated to have an effect on the activity of Ca2+ transporters in the 

lens.  For example, hydrogen peroxide decreases the activity of Ca2+ transporters in rabbit 

lenses (Borchman et al 1989).  These phenomenon�s are closely associated with our 

results demonstrating an increase in Ca2+ transporters, possibly in an attempt to overcome 

their decreased activity in cataractous lenses, as well as a decrease in genes associated 

with protein synthesis. 

Another ion channel that demonstrated increased expression in cataracts is the 

Na+/H+ exchanger isoform 2.  Electroneutral Na+-H+ exchange is present in virtually all 

cell types and mediates the exchange of extracellular Na+ for intracellular H+ and 

therefore plays an important role in regulating the intracellular pH level, cell volume and 

transepithelial Na+ absorption (Sangan, Rajendran, Geibel, and Binder 2002).  

Intracellular pH can affect many cell functions such as metabolic activity, protein 

synthesis and cell growth rates (Bonanno 1991).  Previous studies have demonstrated that 

the Na+/H+ exchangers play a significant role in regulating the intracellular pH of 

cultured bovine lens epithelial cells (Williams et al 1992).  It is also known that the type I 

Na+/H+ exchanger is activated by hypertonicity in many cell types (Garnovskaya et al 

2003) and the epithelial cells of toad lenses exposed to hypertonic conditions become 
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acidified stimulating the Na+/H+ exchanger to return the pH of the epithelial cells back to 

normal levels (Wolosin et al 1989). 

Another major group of genes that exhibit increased expression in cataractous 

epithelia compared to normal clear epithelia encode extracellular matrix proteins.  

Specifically, adducin, a family member of genes encoding cytoskeletal proteins (Gilligan, 

Sarid, and Weese 2002) was increased in cataract.  A second gene, pleiotrophin, which is 

also an extracellular matrix protein that binds heparin (Fath et al 1999) and is induced 

during wound repair (Deuel et al 2002), is also increased in cataracts.  Claudin, a 

component of tight junction filaments capable of interacting adhesively with 

complementary molecules on adjacent epithelial cells (Gonzalez-Mariscal et al 2003), 

also exhibits increased expression in cataracts.  Recent studies have found that 

overexpression of claudin-2 induces cation-selective channels in tight junctions of 

epithelial cells resulting in increased ion permeability (Amasheh et al 2002).  Another 

extracellular matrix gene whose expression is increased in cataracts is supervillin, an F-

actin bundling plasma membrane protein that contains functional nuclear localization 

signals (Wulfkuhle et al 1999).  Bamacan, a chondroitin sulfate proteoglycan that 

abounds in basement membranes and is thought to be involved in the control of cell 

growth and transformation (Ghiselli et al 1999), also exhibits increased expression in 

cataracts.  One final extracellular matrix gene that is increased in cataracts is Osteonectin 

which has previously been demonstrated to be increased in human age-related cataracts 

(Kantorow, Horwitz, and Carper 1998a).  

In summary, this report identifies the global gene expression changes associated 

with age-related cataract and provides evidence for specific biological pathways that are 

associated with this disease.  It is not possible from this study to determine whether these 
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gene expression differences are a cause of cataract formation or a response of the lens to 

the presence of the cataract.  However, future confirmation at the protein level and 

functional analysis of the identified genes in tissue culture and animal model systems will 

eventually help define the individual roles that the identified genes play in lens 

maintenance, protection and cataract.  Analysis of the identified pathways will yield 

important information concerning the regulation of gene expression in age-related 

cataract and may aid in the development of therapeutic treatments to prevent or delay the 

onset of this disease. 
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Chapter V 
 
 
 
 
Identification and Functional Gene Clustering of Global Gene Expression 
Differences between Age-Related Cataract and Clear Human Lenses and Aging 
Clear Human Lenses 
 

J. R. Hawse, J. F. Hejtmancik, J. Horwitz, M. Kantorow 
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ABSTRACT 

 

Purpose:  To identify global gene expression differences between lens epithelia isolated 

from age-related cataract and clear lenses and aging clear lenses. 

Methods:  Gene expression profiles were examined by oligonucleotide microarray 

hybridization using chips containing over 22,000 genes.  Differentially expressed 

transcripts were clustered according to their known functions.  Gene expression changes 

were confirmed by RT-PCR using multiple separately isolated RNA populations. 

Results:  412 transcripts were increased and 919 transcripts were decreased at the 2-fold 

or greater level between epithelia isolated from cataract verses clear lenses.  Of the genes 

increased in cataract, the majority have functions involving transcription regulation, 

nucleic acid binding, protein processing, ion transport and cell growth.  Of the gene 

decreased in cataract the majority have functions involving heat-shock/chaperone 

activity, protein synthesis/degradation, oxidative stress and metal binding.  182 

transcripts were increased and 547 transcripts were decreased in old lenses relative to 

young lenses at the 2-fold or greater level.  In comparing the cataract gene expression 

changes with the aging gene expression changes, only 3 transcripts share similarities in 

expression trends between the two sets of data.  

Conclusions:  The data provide evidence for multiple gene expression differences 

between lens epithelia isolated from cataract and clear lenses and point to multiple 

pathways likely to be important for age-related cataract.  The data also indicate that the 

majority of gene expression changes detected in cataracts are likely to be cataract-specific 

and not due to aging of the lens. 
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INTRODUCTION  
 
 

Age-related cataract is a multi-factorial disease contributed by aging, genetics and 

environmental factors that among others include UV-light, X-irradiation, toxins, metal 

exposure, steroids, drugs and diseases including diabetes (Phelps Brown 1996).  These 

combined factors result in numerous lens changes that culminate to produce lens opacity 

including increased proteolysis, alterations in the cell cycle, altered growth and 

differentiation of lens epithelial cells, altered ion transport and osmotic balance as well as 

DNA damage (Phelps Brown 1996).   

An important step in understanding cataractogenesis is to identify those metabolic 

and biochemical pathways altered between cataract and clear lenses.  In the present 

survey we have sought to identify those gene expression differences between clear human 

lenses relative to age-related cataracts and we have focused on the lens epithelium since 

this monolayer of cells is essential for the growth, differentiation and homeostasis of the 

entire organ (Bloemendal 1981; Piatigorsky 1981a).  It contains the highest levels of 

enzymes and transport systems in the lens (Reddan JR. 1982; Reddy 1971b; Spector 

1982a) and is the first part of the lens exposed to environmental insults (Reddan JR. 

1982; Spector 1982a).  Multiple studies suggest that the lens epithelium is capable of 

communicating with the underlying fiber cells (Rae, Bartling, Rae, and Mathias 1996b) 

and direct damage to the lens epithelium and its enzyme systems is known to result in 

cataract formation (Harding JJ 1984; Hightower 1995; Phelps Brown 1996; Spector 

1995).  Importantly, the majority of transcription occurs in the epithelial cells of the lens, 

and therefore these cells make up the majority of lens cells capable of responding to 

environmental insults and/or the presence of cataract through altered gene expression.  



 116

Since the lens epithelium is composed of a single cell-type it represents an ideal model 

for differential gene expression studies.    

Considerable evidence suggests that gene expression in the lens epithelium is 

altered by the presence of cataract.  For instance, metallothionein IIa (Kantorow, Kays, 

Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b) osteonectin, also known as SPARC 

(Kantorow, Horwitz, and Carper 1998a) and adhesion related kinase (Sheets et al 2002) 

are up-regulated in cataract relative to clear lenses while multiple ribosomal proteins 

(Zhang, Hawse, Huang, Sheets, Miller, Horwitz, and Kantorow 2002) and protein 

phosphatase 2A (Kantorow, Kays, Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b) 

are down-regulated in cataract relative to clear lenses.  Many of these genes have 

functions consistent with processes associated with cataract formation.  Metallothionein 

IIa is involved in metal binding and detoxification (Kagi and Schaffer 1988) and heavy 

metals such as cadmium are known to be associated with cataract (Ramakrishnan, 

Sulochana, Selvaraj, Abdul, Lakshmi, and Arunagiri 1995).  Osteonectin, a calcium-

binding protein that functions in the regulation of cell growth (Sage, Bassuk, Yost, 

Folkman, and Lane 1995), when deleted in mice results in cataract formation (Gilmour et 

al 1998).  Decreased expression of ribosomal proteins results in decreased protein 

synthesis, a phenomenon that has been linked to cataract formation (Haloui, Pujol, 

Galera, Courtois, and Laurent 1990).   

 Although these individual changes in gene expression are informative, further 

gene identification is needed to define those functional gene clusters that could elucidate 

major pathways associated with cataract.  Here, we have used oligonucleotide 

microarrays to compare the global gene expression profiles between pooled, 

approximately age-matched, human lens epithelia isolated from cataract and clear lenses 
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and have compared the data set with those genes altered in aging of the lens epithelium to 

delineate cataract specific changes from age-related changes in gene expression.  This 

technology allows us to examine the expression levels of well over half of the genes 

comprising the human genome.   
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RESULTS 

 

This analysis revealed 412 transcripts whose expression levels are increased by 2-

fold or greater in human age-related cataract relative to clear lenses and an additional 919 

transcripts whose expression levels are decreased by 2-fold or greater (Hawse et al 2003).  

Of these genes, 74 are increased by 5-fold or greater and 241 are decreased by 5-fold or 

greater in cataract (Hawse, Hejtmancik, Huang, Sheets, Hosack, Lempicki, Horwitz, and 

Kantorow 2003).  Semi-quantitative RT-PCR confirmations indicate that the microarray 

data is approximately 82% accurate (Hawse, Hejtmancik, Huang, Sheets, Hosack, 

Lempicki, Horwitz, and Kantorow 2003). 

 Functional clustering and over-representation analysis of the identified genes 

using the EASE bioinformatics software package revealed that multiple biological 

pathways represented by functional gene clusters are significantly altered upon cataract 

formation.  Of the genes increased in cataract by 2-fold or greater the following 

categories were identified as being significantly altered; chromosome organization, 

nuclear organization, transcription/DNA-dependent, transcription, nucleic acid 

metabolism, nucleic acid binding, ligand binding or carrier and DNA binding (Hawse, 

Hejtmancik, Huang, Sheets, Hosack, Lempicki, Horwitz, and Kantorow 2003).  Of the 

genes decreased in cataract by 2-fold or greater the following categories were identified 

as being significantly altered; RNA splicing, protein biosynthesis, protein synthesis 

elongation, protein synthesis initiation, macromolecule biosynthesis, amine biosynthesis, 

peroxidase reaction, microtubule-based process, organelle organization, cytoskeleton 

organization, temperature response, heat shock response, vision, response to external 

stimulus, U6 snRNA binding, pre-mRNA splicing factor, mRNA binding, proteasome 
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endopeptidase, translation factor, selenium binding, alcohol dehydrogenase, heat shock 

protein, oxidoreductase, glutathione peroxidase, chaperone, structural constituents of lens 

and structural molecules (Hawse, Hejtmancik, Huang, Sheets, Hosack, Lempicki, 

Horwitz, and Kantorow 2003). 

 One intriguing question concerning these gene expression changes is whether they 

would be specific for cataract or would also be detected in young verses old lenses.  

Therefore, we have also conducted oligonucleotide microarray studies on old and young 

lens epithelia to identify gene expression changes that occur in the lens with age.  For this 

experiment we used 10 pooled young lens epithelia, average age 32.3 years, and 10 

pooled old lens epithelia, average age 64.2 years.  This analysis revealed that 182 

transcripts are increased in old lenses compared to young lenses while 547 transcripts are 

decreased at the 2-fold or greater level.  Of these, only 4 transcripts are increased with 

age at the 5-fold or greater level while 74 transcripts are decreased with age at the 5-fold 

or greater level. 

 Functional clustering of the identified gene expression differences between young 

and old lenses revealed that Biological Processes such as regulation of translation, protein 

synthesis, intracellular transport, cell growth and/or maintenance, and response to stress, 

among others, are increased with age (Figure 1) while Biological Processes such as 

double-strand break repair, telomere maintenance, transcription, chromosome 

segregation, extracellular matrix organization and DNA unwinding, among others, are 

decreased with age (Figure 2). 
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Figure 1.  Functional clusters of genes involved in biological processes which have 

increased expression levels in old lens epithelium compared to young lens epithelium.  

The specific sub-categories of genes determined to be significantly altered using the 

statistical clustering program, EASE, are indicated.  Percentages indicate the number of 

altered genes in each sub-category relative to their total representation on the microarray.  

Colors denote the approximate relative cellular location for which the genes in each sub-

category function ranging from the nucleus to the plasma membrane (red to violet).  Pie 

piece size approximates the number of changed genes in each sub-category. 
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Figure 2.  Functional clusters of genes involved in biological processes which have 

decreased expression levels in old lens epithelium compared to young lens epithelium.  

The specific sub-categories of genes determined to be significantly altered using the 

statistical clustering program, EASE, are indicated.  Percentages indicate the number of 

altered genes in each sub-category relative to their total representation on the microarray.  

Colors denote the approximate relative cellular location for which the genes in each sub-

category function ranging from the nucleus to the plasma membrane (red to violet).  Pie 

piece size approximates the number of changed genes in each sub-category. 
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DISCUSSION 

 

Although it is extremely difficult to summarize this large amount of data a few 

groups of genes that may play an important roles in cataract formation are worthy of 

noting.  The relative expression differences of these genes and other genes not discussed 

here are available (Hawse, Hejtmancik, Huang, Sheets, Hosack, Lempicki, Horwitz, and 

Kantorow 2003).  Of the genes increased in cataract, many are associated with ionic 

transport.  In particular, a PQ type voltage gated calcium channel is increased in cataract 

by nearly 5-fold.  Calcium is likely to be an important factor in cataract formation since 

the activity of calcium-ATPase is reduced by 50% in the membranes of lens epithelia 

isolated from cataractous lenses compared to clear human lenses (Paterson, Zeng, 

Husseini, Borchman, Delamere, Garland, and Jimenez-Asensio 1997).  Oxidative stress 

has also been demonstrated to have an effect on the activity of calcium transporters in the 

lens.  For example, hydrogen peroxide decreases the activity of calcium transporters in 

rabbit lenses (Borchman, Paterson, and Delamere 1989).  These phenomenons are closely 

associated with our results demonstrating an increase in calcium transporters, possibly in 

an attempt to overcome their decreased activity in cataractous lenses. 

Adducin, another member of the ligand binding or carrier group, is increased in 

cataracts by 6-fold.  Adducin is a cytoskeletal protein involved in signal transduction 

mechanisms through modulation of the actin cytoskeleton at cell-cell contact sites 

(Kuhlman et al 1996).  The actin based cytoskeleton has been shown to interact with 

epithelial sodium channels, sodium/potassium/chloride co-transporters and 

sodium/potassium ATPase and is therefore likely to be involved in alterations in ionic 

transporters.  Copine III is another gene involved in membrane trafficking processes 
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(Creutz et al 1998) upon calcium binding.  We have detected that Copine III is increased 

in cataracts relative to clear lenses by 7-fold.  Other genes known to be involved in ligand 

binding or transport that exhibited high levels of increased expression in cataracts were 

sodium/potassium ATPase beta 1 polypeptide, chloride channel 3, pleiotrophin and 

sodium/hydrogen exchanger isoform 2. 

Another major group of genes that exhibit increased expression in cataractous 

epithelia compared to clear lens epithelia are extracellular matrix proteins.  Specific 

examples include adducin, pleiotrophin, an extracellular matrix protein that binds heparin 

(Fath, VanderNoot, Kilpelainen, Kinnunen, Rauvala, and Linhardt 1999) and is induced 

during wound repair (Deuel, Zhang, Yeh, Silos-Santiago, and Wang 2002).  Another 

gene included in this category is claudin, a component of tight junction filaments capable 

of interacting adhesively with complementary molecules on adjacent epithelial cells 

(Gonzalez-Mariscal, Betanzos, Nava, and Jaramillo 2003).  Recent studies have found 

that overexpression of claudin-2 induces cation-selective channels in tight junctions of 

epithelial cells resulting in increased ion permeability (Amasheh, Meiri, Gitter, 

Schoneberg, Mankertz, Schulzke, and Fromm 2002).  Other genes include supervillin, an 

F-actin bundling plasma membrane protein that contains functional nuclear localization 

signals (Wulfkuhle, Donina, Stark, Pope, Pestonjamasp, Niswonger, and Luna 1999), 

bamacan, a chondroitin sulfate proteoglycan that abounds in basement membranes and is 

thought to be involved in the control of cell growth and transformation (Ghiselli, 

Siracusa, and Iozzo 1999) and osteonectin which has previously been demonstrated to be 

increased in human age-related cataracts (Kantorow et al 2000). 

 The majority of genes whose expression levels are altered between cataracts and 

clear lenses exhibit decreased expression.  These genes function in diverse processes 
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including protein synthesis, oxidative stress, structural proteins, chaperones and cell cycle 

control proteins.  Many of these processes represent metabolic systems designed to 

preserve lens homeostasis and their decreased expression may reflect the inability of the 

lens to maintain its internal environment in the presence of stress and/or cataract.  

Specific examples of these genes include multiple ribosomal subunits involved in protein 

synthesis including large subunits 21, 15, 13a and 7a which were previously shown to be 

decreased in cataract relative to clear human lenses (Zhang, Hawse, Huang, Sheets, 

Miller, Horwitz, and Kantorow 2002), selenoprotein W1, a glutathione dependent 

antioxidant known to protect lung cells against H2O2 cytotoxicity (Jeong, Kim, Chung, 

Lee, and Kim 2002) which could play a role in defending the lens against oxidative 

stress, glutathione peroxidases 1, 3 and 4, important oxidative stress enzymes that are 

likely to play major roles in lens protection and maintenance (Reddy, Giblin, Lin, Dang, 

Unakar, Musch, Boyle, Takemoto, Ho, Knoernschild, Juenemann, and Lutjen-Drecoll 

2001), ferritin, which has been linked to hereditary hyperferritinemia-cataract syndrome 

(Martin, Fargion, Brissot, Pellat, and Beaumont 1998), multiple crystallins and other lens 

structural components, Hsp70, a key ATPase activated chaperone (Haslbeck 2002), 

Hsp27-1, a small heat-shock protein likely to be important for lens protection (Ganea 

2001), Hsp27-2, a small heat shock protein closely related to αB-crystallin (Iwaki, 

Nagano, Nakagawa, Iwaki, and Fukumaki 1997) which may also be important for lens 

protection, and  αΑ -crystallin that, in addition to its structural role in the lens, is also a 

small heat shock protein that can prevent protein aggregation in the lens (Horwitz 1992). 

Specific genes whose transcript levels were detected to be increased in old lens 

epithelia relative to young lens epithelia included multiple small and large ribosomal 

subunits as well as several translation initiation, elongation and termination factors.  MIP, 
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tubulin and cyclin D1 are examples of genes involved in cell growth and/or maintenance 

that were increased in aged lens epithelia.  Another category of interest which also 

exhibited increased expression with age is response to stress which includes growth arrest 

and DNA damage-inducible alpha gene, TNF receptor member 17, beta 1 integrin and 

chemokine ligand 2.  It must be noted that, as mentioned above, the majority of these 

genes have increases in transcript levels of only 2-3-fold. 

There were many more genes with much larger fold changes that exhibited 

decreased expression with age.  Major categories of these genes included double-strand 

break repair and telomere maintenance.  Specifically we detected decreased expression 

levels of telomeric repeat binding factor 1, the deletion of which causes growth defects 

and chromosomal instability in mouse embryonic stem cells (Iwano et al 2004), dyskerin, 

which is believed to function in maintaining cell proliferation and/or function (Heiss et al 

1999) and nijmegen breakage syndrome 1 which functions in double-strand break repair 

and cell cycle checkpoints (Carney et al 1998).   

Another major category that exhibited decreased expression is transcription 

associated genes that include numerous zinc finger proteins and other transcription 

factors.  It is well documented that many genes involved in transcriptional processes are 

down regulated with age in multiple tissues and organisms including rats (Blalock et al 

2003), mice (Frasca et al 2003) and humans (Roy et al 2002) and their down regulation is 

a central hypothesis as to why cells age and eventually die.  

In order to identify those gene expression differences that are likely to be specific 

for cataract and not aging of the lens we compared the aging data with the cataract data.  

In comparing these two sets of data, only 3 transcripts were identified to be common 

between the detected cataract specific gene expression differences and the aging specific 
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gene expression differences even at the 2-fold or greater level.  These three transcripts, 

hevin, opioid binding protein/cell adhesion molecule and FXYD domain containing ion 

transport regulator 6, are decreased in cataracts compared to clear lenses and are also 

decreased with age.  There were no genes that were increased in cataract and 

simultaneously increased with age.  A total of 126 transcripts exhibit decreased 

expression in cataracts and increased expression with age while 171 transcripts are 

increased in cataract and decreased with age.  There are 1031 transcripts identified to be 

changed between cataract and clear lenses but unchanged with age and another 429 

transcripts that are altered with age but unchanged in cataracts.  It is interesting to note 

that many of the functional categories that are increased in cataracts are actually 

decreased with age and those that are decreased in cataracts are increased with age. 

In summary, this review highlights those genes and their associated functional 

categories that were detected to be altered in cataract relative to clear lenses.  

Interestingly, our preliminary data suggest that these changes are specific for cataract and 

not associated with lens aging.  Although this work is descriptive and does not 

distinguish consequential gene expression differences from true responses of the lens 

epithelium to the presence of cataract, it nevertheless reveals many functional processes 

altered in cataract whose further study will provide significant insight into this disease.   
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Chapter VI 

 

Activation of metallothioneins and alpha-crystallin/sHSPs in human lens epithelial 
cells by specific metals and the metal content of aging clear human lenses   
 
John R. Hawse, Jonathan R. Cumming, Brian Oppermann, Nancy L. Sheets, Venkat N. 
Reddy, Marc Kantorow 
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ABSTRACT 

Purpose:  To identify those metallothionein and α-crystallin/small heat shock genes 

induced by toxic metals in human lens cells and to evaluate the levels of these metals 

between young and aged human lenses.  Methods:  Human SRA01/04 and primary 

human lens epithelial cells were cultured and exposed to Cd+2, Cu+2 and Zn+2.  The levels 

of lens metallothioneins (Ig, If, Ih, Ie, and IIa) and α-crystallin/small heat-shock (αA-

crystallin, αB-crystallin and HSP27) genes were analyzed by semi-quantitative and 

quantitative mimic RT-PCR.  The content of aluminum, cadmium, calcium, chromium, 

copper, iron, lead, magnesium, manganese, nickel, potassium, sodium and zinc in young 

(average 32.8 yrs), middle-aged (average 52.3 yrs.) and old (average 70.5 yrs.) human 

lenses was analyzed by inductively coupled plasma emission spectroscopy.  Results:  

Lens metallothioneins (Ig, If, Ih, Ie, and IIa) and α-crystallin/small heat-shock genes 

(αA-crystallin, αB-crystallin and HSP27) were differentially induced by specific metals 

in SRA01/04 human lens epithelial cells.  Cd+2 and Zn+2, but not Cu+2, induced the 

metallothioneins while Cd+2 and Cu+2, but not Zn+2, induced αB-crystallin and HSP27.  

αA-crystallin was induced by Cu+2 only.  Similar responses of the metallothionein IIa 

gene were detected in identically treated primary human lens epithelial cells.  Cadmium 

and Zn+2 induced metallothionein IIa to 5-times higher levels than metallothionein Ig.  

Out of 13 different metals, only iron was altered, exhibiting an 81% decrease in old 

versus young lenses.  Conclusions:  Induction of metallothioneins and α-crystallin/small 

heat shock proteins by different metals indicates the presence of metal-specific lens 

regulatory pathways likely to be involved in protection against metal-associated stresses.   
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INTRODUCTION 

Toxic metals, and the genes that they induce, are associated with cell death, 

oxidative stress and lens cataract.  Human exposures to toxic metals such as iron, copper, 

cadmium, lead, aluminum and others, arise from wide-spread sources including cigarette 

smoke, air pollution, leaching of landfills, industrial waste, emissions from fossil fuels, 

fertilizers and corrosion of plumbing (Artic Monitoring and Assessment Program 

(AMAP). 2000; Ruffett, Ayres, and McBride 1992).  Cd+2 has a biological half-life in 

humans of up to 30 years (Grubb et al 1985) and large amounts of Cd+2 have been 

detected in the lenses of chronic smokers (Ramakrishnan, Sulochana, Selvaraj, Abdul, 

Lakshmi, and Arunagiri 1995) who also exhibit early cataract formation (Clayton et al 

1984).  Increased Cd+2 levels have been reported in cataract versus clear human lenses 

(Ramakrishnan, Sulochana, Selvaraj, Abdul, Lakshmi, and Arunagiri 1995).  Iron and 

Cu+2 participate in Fenton- type reactions associated with oxidative stress and cataract 

(Phelps Brown 1996).  Hyperferritinemia (Girelli, Corrocher, Bisceglia, Olivieri, De 

Franceschi, Zelante, and Gasparini 1995) and defects in Cu+2 transport, including 

Wilson�s and Menkes disease (Cuthbert 1998), result in specific types of human cataract.  

  Biological systems have evolved numerous gene pathways to regulate and 

detoxify heavy metals.  One major group of proteins that are believed to regulate and 

protect against metals is the metallothioneins (MTs).  There are 16 known isoforms of 

MTs in humans, which are grouped into four classes: MTs I, II, III and IV.  MTs are 6-7 

kDa polypeptides (Kagi and Schaffer 1988) that bind a wide spectrum of metals and are 

rapidly induced by metals and other agents in numerous tissues (Kagi and Schaffer 1988).  

In addition to metals, they are induced by steroids in rat fibroblasts (Karin et al 1984) and 

primary human skin fibroblasts (Angel et al 1986), carcinogens in mice (Bauman et al 
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1991), chemicals that induce oxidative stress in rodent cells (Fornace, Jr. et al 1988) and 

X-irradiation and UV-induced DNA damage in multiple cell types (Oguro and Yoshida 

2001).  

We have previously shown that the human lens expresses MT classes I and II 

including MT isoforms Ia, Ig, If, Ih, Ie and IIa (Oppermann et al 2001b).  Only one 

isoform, MTIIa, is specific for the lens epithelium whereas the MTI isoforms are 

expressed at lower levels in both the lens epithelium and lens fibers (Oppermann, Zhang, 

Magabo, and Kantorow 2001b).  In addition, MTIIa exhibits increased expression in age-

related cataract relative to clear human lenses (Kantorow, Kays, Horwitz, Huang, Sun, 

Piatigorsky, and Carper 1998b) suggesting a possible role for MTIIa in lens protection.  

       Multiple studies have demonstrated a direct role for MTs in protecting 

multiple cell types against a wide range of insults that are associated with metal exposure, 

oxidative stress and cataract.  Overexpression of MT in a human trophoblastic cell line 

has been shown to protect against cadmium-induced apoptosis (McAleer and Tuan 2001).  

MT I- and II-null mice are more sensitive than wild-type mice to metal exposure and 

oxidative stress (Kelly et al 1996; Liu et al 1996; Masters et al 1994; Michalska and Choo 

1993; Park et al 2001); however, no one has examined the lenses of these animals.  

Overexpression of MTIa in a human retinal pigment epithelial cell line provides direct 

protection against Cd+2 exposure, heme- and iron-induced oxidation and UV light-

induced apoptosis (Lu et al 2002).  

In addition to the MTs, the α-crystallin/small heat shock genes have also been 

shown to be induced by metals in non-lens systems.  Like MTs, αB-crystallin and HSP27 

have been shown to be induced by Cd+2 in astrocytes (Head et al 1996).  In addition to 

metals, the small heat shock proteins (sHSPs) are also induced by a wide variety of 
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agents including increasing hypertonicity in retinal pigment epithelial cells (Lin et al 

1993) and dog lens epithelial cells (Dasgupta et al 1992), vasopressin in human vascular 

smooth muscle cells (Kaida et al 1999), TGF-β in human trabecular meshwork cells 

(Welge-Lussen et al 1999) and rat lenses (Sun et al 2000), heat shock in human and 

monkey trabecular meshwork (Tamm et al 1996), various rat tissues including central 

nervous tissue, liver, lung, spleen, adrenal glands and hypophysis (Inaguma et al 1995) 

and astrocytomoa cells (Inaguma et al 1992), hydrogen peroxide treatment in human and 

monkey trabecular meshwork cells (Tamm, Russell, Johnson, and Piatigorsky 1996) and 

glucocorticoids in fibroblasts (Scheier et al 1996).  To date, no one has examined the 

levels of α-crystallin/sHSPs induced by metals in lens cells.  

Unlike MTs, whose exact functions in lens cells remain unknown, numerous 

studies have demonstrated a direct role for α-crystallin/sHSPs in lens protection.  

Overexpression of αA- and αB-crystallin has been shown to protect lens epithelial cells 

against stress-induced apoptosis (Andley et al 1998; Andley et al 2000; Andley et al 

2002).  αA-crystallin-null mice develop lens opacities at an early age (Andley, Song, 

Wawrousek, and Bassnett 1998; Brady et al 1997a) and the growth rate of lens epithelial 

cells isolated from these animals is reduced by 50% (Andley, Song, Wawrousek, and 

Bassnett 1998).  

 Based on the association between toxic metals and lens cataract, and the detection 

of increased MTIIa expression in age-related cataract relative to clear lenses (Kantorow, 

Kays, Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b), we sought to further define 

the magnitude and specificity for induction of those lens MTs (Oppermann, Zhang, 

Magabo, and Kantorow 2001b) and lens α-crystallin/sHSPs in response to 3 commonly 

studied metals including Cd+2, Cu+2 and Zn+2.  To survey the metal content of aging 



 134

human lenses, we also determined the levels of 13 different metals between young, 

middle-aged and old lenses.  

Establishing the metal-induced expression patterns of these genes in HLEs is 

important, since it is essential to examine their responses in cultured lens cells before 

proceeding to functional and in vivo studies.  Since the lens epithelium is a 

transcriptionally active region of the lens and is essential for the growth, differentiation, 

and homeostasis of the entire lens (Bloemendal 1981; Piatigorsky 1981a), and, since 

approximately 90% of the lens MTs are confined to this lens region (Oppermann, Zhang, 

Magabo, and Kantorow 2001b), the lens epithelium would be expected to be particularly 

responsive to toxic metals.  In addition, significant levels of α-crystallin/sHSPs that may 

also respond to metals (Head, Hurwitz, and Goldman 1996) are localized to this part of 

the lens.  Since lens epithelial cells occupy the most anterior portion of the lens, and are 

readily exposed to environmental insults, and since these cells contain the majority of 

enzymes and transport systems in the lens (Reddan JR. 1982; Reddy 1971b; Spector 

1982a), this region of the lens would be expected to be particularly prone to direct and/or 

indirect damage associated with toxic metals. 

 Our results provide evidence that the human lens epithelium responds to specific 

metals through the differential induction of 5 different MT isoforms and 3 different α-

crystallin/sHSPs, including αA-crystallin which, to our knowledge, has not previously 

been shown to be induced by metals and/or stress.  Consistent with the detection of 

increased MTIIa expression in age-related cataract relative to clear human lenses 

(Kantorow, Kays, Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b), MTIIa is the 

primary MT isoform induced in HLEs.  Different MTs and α-crystallin/sHSPs are 

induced by different metals suggesting specific roles for these genes in lens metal 
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regulation and/or protection.  With the exception of iron levels, which dramatically 

decrease with age, the levels of 12 different metals in healthy human lenses remain 

constant with age, indicating that toxic metals do not accumulate in clear human lenses.  
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RESULTS 

 

Quantification of MTIIa levels relative to MTIg levels induced by Cd+2, Cu+2 and 

Zn+2 in HLEs. 

 

To determine the relative levels of a class II MT in comparison with a class I MT 

induced by toxic metals in HLEs, we examined the induction levels of MTIIa and MTIg 

upon exposure to Cd+2, Cu+2 and Zn+2 by quantitative mimic RT-PCR.  Cd+2, Cu+2 and 

Zn+2 were evaluated as inducers in these experiments since these are the metals that have 

been used in the majority of studies on MT and α-crystallin/sHSP induction in non-lens 

systems (Head, Hurwitz, and Goldman 1996; Kagi and Schaffer 1988).  MTIIa was 

chosen since this MT isoform exhibits increased expression in age-related cataract 

relative to clear human lenses (Kantorow, Kays, Horwitz, Huang, Sun, Piatigorsky, and 

Carper 1998b) and MTIg was chosen as a representative class I MT.  

In preliminary studies, maximum MT induction occurred after 8 hour treatments 

with 2.8 µM Cd+2, 100 µM Cu+2 and 100 µM Zn+2  (data not shown).  Trypan blue 

exclusion detected no more than 10% cell death under these conditions (Fig. 2).  Longer 

exposure times or higher metal concentrations resulted in decreased cell viability and 

consequent loss of gene expression (data not shown).  

One to 2 pg of MTIIa mimic DNA equally competed with the amount of MTIIa 

transcript present in 300 ng of untreated control RNA (Fig. 3).  The level of MTIIa 

transcript present in untreated control cells is therefore between 0.003-0.006 pg per ng of 

total RNA.  By comparison, the amount of mimic DNA required to equally compete with 

the amount of MTIIa transcript present in 300 ng of RNA from Cd+2 treated cells was 10-



 137

20 pg (Fig. 3).  The level of induced MTIIa transcript in Cd+2 treated cells is therefore 

between 0.033 to 0.067 pg per ng of total RNA.  The amount of mimic DNA required to 

equally compete with the amount of MTIIa transcript present in 300 ng of RNA from 

Zn+2 treated cells was between 2 to 4 pg (Fig. 3).  The level of induced MTIIa transcript 

in Zn+2 treated cells is therefore between 0.007 to 0.013 pg per ng of total RNA.  

Treatment with Cu+2 showed little or no difference in the levels of MTIIa transcript 

(0.003-0.006 pg per ng of total RNA) when compared to untreated control cells (0.003-

0.006 pg MTIIa per ng of total RNA) (Fig. 3).  These data demonstrate that MTIIa is 

induced in HLEs by Cd+2 (10-20 fold), and Zn+2(2-4 fold), while Cu+2 treatment results in 

no induction of the MTIIa transcript.  

In contrast to MTIIa, 0.1 pg of MTIg mimic DNA equally competed with the 

amount of MTIg transcript present in 300 ng of untreated control RNA.  The level of 

MTIg transcript present in untreated control cells is therefore 0.0003 pg per ng of total 

RNA.  The amount of mimic DNA required to equally compete with the amount of MTIg 

transcript present in 300 ng of RNA from Cd+2 treated cells was approximately 1 pg (Fig. 

4).  The level of MTIg transcript in Cd+2 treated cells is therefore about 0.003 pg per ng 

of total RNA.  The amount of mimic DNA required to equally compete with the amount 

of MTIg transcript present in 300 ng of RNA from Zn+2 treated cells was between 0.1 to 

0.5 pg (Fig. 4).  The level of MTIg transcript in Zn+2 treated cells is therefore between 

0.0004 to 0.0018 pg per ng of total RNA.  Consistent with the previous experiments, 

treatment with Cu+2 showed little or no difference in the levels of MTIg transcript (0.0003 

pg per ng of total RNA) when compared to untreated control cells (0.0003 pg MTIg per 

ng of total RNA) (Fig. 4).   
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Collectively, these data demonstrate that although the patterns of induction of 

MTIIa and MTIg in response to metals are similar, MTIIa is induced at 5-times higher 

levels than MTIg in response to these metals in HLEs.  These genes exhibit specific 

inductions for different metals since Cd+2 and Zn+2 activate them while Cu+2 does not.  

 

Induction of MTIIa in primary human lens epithelial cells. 

  

 To provide confidence that inductions detected for MTIIa are not restricted to the 

transformed SRA01/04 cells, the induction levels of MTIIa were also examined under 

identical conditions in untransformed primary HLEs by semi-quantitative RT-PCR (Fig. 

5).  In these cells, MTIIa was induced to high levels by Cd+2 and low levels by Zn+2  

when compared to untreated control cells (Fig. 5).  Although slight induction was 

detected with Cu+2 treatment (Fig. 5), these data demonstrate that similar induction 

patterns for MTIIa occur in untransformed primary HLEs and are likely to be paralleled 

in vivo. 

 

Identification of the spectrum of metallothionein and small heat-shock genes 

induced by Cd+2, Cu+2 and Zn+2 in HLEs. 

  

 The spectrum and metal specificity for 5 of the previously identified lens MT 

isoforms (Oppermann, Zhang, Magabo, and Kantorow 2001b) and 3 lens α-

crystallin/sHSPs induced by Cd+2, Cu+2 and Zn+2 in SRA01/04 HLEs were evaluated by 

semi-quantitative RT-PCR.  As in the previous studies (Figs. 3 and 4), MTs IIa and Ig 

were induced by Cd+2 and Zn+2, but not by Cu+2 (Fig. 6).  MTs Ie, If and Ih were also 
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induced by Cd+2 and Zn+2, but not by Cu+2 (Fig, 6).  αB-crystallin and HSP27 were 

induced by Cd+2 and Cu+2, but not by Zn+2, and αA-crystallin was only induced by Cu+2 

(Fig. 6).  

 

Analysis of 13 different metals in decapsulated human lenses. 

  

 To establish whether metal levels change in the aging human lens, the levels of 13 

different metals were evaluated by ICP.  Elemental profiles in aging lenses are presented 

in Table 2.  Sodium and potassium concentrations were highest, followed by magnesium 

and calcium.  For other metals, zinc was found in the highest concentration, followed by 

iron and copper.  Levels of aluminum, manganese, nickel, cadmium, chromium and lead 

were below the levels of detection (Table 2).  Of the elements analyzed, only iron 

exhibited an age-dependent pattern.  Iron concentration was highest in young lenses, 

exhibited increasing variability in middle-aged lenses, and dropped by 81% in the lenses 

of older individuals. 
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Table 1.  Primers used for RT-PCR 

Gene   Primer Sequence Annealing Temp. Accession # 
    

MTIIa AAGTCCCAGCGAACCCGCGT 52 J00271 
MTIIa CAGCAGCTGCACTTGTCCGACGC 52 J00271 
MTIe GCTCCAGCATCCCCTTTGCT 57 M10942 
MTIe CACATCAGGCACAGCAGCTG 57 M10942 
MTIf GCTTCTCTCTTGGAAAGTCC 55 M10943 
MTIf GGCATCAGTCGCAGCCGCTG 55 M10943 
MTIg GCCTCTTCCCTTCTCGCTTG 55 J03910 
MTIg GACATCAGGCGCAGCAGCTG 55 J03910 
MTIh GAACTCCAGTCTCACCTCGG 55 X64834 
MTIh GACATCAGGCACAGCAGCTG 55 X64834 

αΑ -crystallin CCACCTCGGCTCCCTCGTCCTAAG 64 NM_000394 
αΑ -crystallin CCATGTCCCCAAGAGCGGCACTAC 64 NM_000394 
αΒ-crystallin AGCCGCCTCTTTGACCAGTTCTTC 60 NM_001885 
αΒ-crystallin GCGGTGACAGCAGGCTTCTCTTC 60 NM_001885 

HSP27 CGCGCTCAGCCGGCAACTCAG 64 XM_055937 
HSP27 AGGGGTGGGCATCCGGGCTAAGG 64 XM_055937 

GAPDH CCACCCATGGCAAATTCCATGGCA 52 XM_006959 
GAPDH TCTAGACGGCAGGTCAGGTCCACC 52 XM_006959 
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Table 2.  Concentration of Elements in Human Lenses from Individuals of Different Ages 
    
   Age Group (mean)   
    
Element Young (32.8 y) Middle (52.3 y) Old (70.5 y) 
    
Sodium 8267 ± 931 6632 ± 798 8326 ± 859 
Potassium 4479 ± 468 5478 ± 1007 5574 ± 326 
Magnesium 176.5 ± 3.0 180.2 ± 20.2 148.2 ± 15.3 
Calcium 119.7 ± 28.1 78.0 ± 21.6 136.0 ± 37.7 
Zinc 32.15 ± 9.39 25.82 ± 3.45 25.79 ± 3.96 
Iron 12.42 ± 0.21a 10.67 ± 2.07a 2.22 ± 1.21b 
Copper 1.094 ± 0.168 0.677 ± 0.029 0.949 ± 0.304 
Cadmium ND* ND ND 
        
    
        Data are concentrations (mg/g) ± SE (n = 3).  Superscript letters denote significant 
       differences by the Tukey-Kramer HSD comparison.  Nine groups of five lenses 
       each were digested and assessed for metal concentration by ICP and the results             
       expressed in micrograms of metal per gram of dry lens.  ND, not detectable. 
               * Below the level of detection (<0.191 mg/L). 
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Figure 1.  Schematic representation of the MTIIa PCR mimic (A).  A 138 bp internal 

sequence (+18 to +155, from the start of translation) was deleted from the MTIIa cDNA 

to create the 99 bp MTIIa PCR mimic.  Shown for comparison is the full-length 237 bp 

MTIIa cDNA.  Schematic representation of the MTIg PCR mimics (B).  A 118 bp 

internal sequence (+18 to +135, from the start of translation) was deleted from the MTIg 

cDNA to create the 99 bp MTIg PCR mimic.  Shown for comparison is the full-length 

217 bp MTIg cDNA.  Indicated are the primer binding sites.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 143

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Product 
Size 

MTIIa Mimic 

MTIIa cDNA 

 -58 bp +179 bp

 -58 bp +179 bp 

Primer F 

Primer F 

Primer R 

Primer R 

99 bp 

237 bp 

+18 bp +155 bp 

ATG

ATG 

Product 
Size 

MTIg Mimic 

MTIg cDNA 

 -47 bp +170 bp

 -47 bp +170 bp 

Primer F 

Primer F 

Primer R 

Primer R 

99 bp 

217 bp 

+18 bp +135 bp 

ATG

ATG 

A. 

B. 



 144

Figure 2.  Cell toxicity resulting from Cd+2, Cu+2 and Zn+2 treatment of HLEs at 

indicated metal concentrations.  HLEs were treated with indicated metals for 8 hours and 

cell death was examined by trypan blue exclusion.  Values represent the averages and 

standard deviations of three separate experiments. 
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Figure 3.  Ethidium bromide stained gels showing quantitative mimic RT-PCR analysis 

of MTIIa induced after 8 hours of Cd+2, Cu+2 or Zn+2 treatment.  300 ng of RNA were 

amplified in the presence of increasing amounts (0-500 pg) of competing MTIIa mimic 

DNA.  Indicated are the metal concentrations, the 237 bp MTIIa cDNA, the 99 bp MTIIa 

mimic PCR products and the calculated radioactivity incorporated in each PCR product.  
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Figure 4.  Ethidium bromide stained gels showing quantitative mimic RT-PCR analysis 

of MTIg induced after 8 hours of Cd+2, Cu+2 or Zn+2 treatment.  300 ng of control RNA 

was amplified in the presence of increasing amounts (0-500 pg) of competing MTIg 

mimic DNA.  Indicated are the metal concentrations, the 217 bp MTIg cDNA and the 99 

bp MTIg mimic PCR products. 
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Figure 5.  Ethidium bromide stained gel showing the levels of MTIIa detected by RT-

PCR in 50 ng of RNA isolated from primary human lens epithelial cells induced by Cd+2, 

Cu+2 and Zn+2 for 8 hours at the indicated concentrations for a total of 28 PCR cycles.  

Shown as control are the corresponding GAPDH levels. 
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Figure 6.  Ethidium bromide stained gels showing the levels of metallothionein and small 

heat-shock genes detected by RT-PCR in 100 ng of RNA isolated from HLEs induced by 

Cd+2, Cu+2 and Zn+2 for 8 hours at the indicated concentrations. 
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DISCUSSION 
 

The present data demonstrate that 5 MTs previously demonstrated to be expressed 

by the human lens (Oppermann, Zhang, Magabo, and Kantorow 2001b), including 

isoforms Ie, If, Ig, Ih and IIa, and 3 lens α-crystallin/sHSPs, including αA-crystallin, αB-

crystallin and HSP27, are differentially induced by specific metals in HLEs.  These 

inductions are likely to be present in vivo, since similar inductions were observed for 

MTIIa in primary cultures of HLEs.  To our knowledge, this is the first demonstration of 

αA-crystallin induction by metals or other stresses and provides evidence that αA-

crystallin could be a stress-responsive gene that protects lens cells against metal-

associated damage. 

Activation of these genes is metal-specific in HLEs since Cd+2 and Zn+2, but not 

Cu+2, induced the MT genes (Ie, If, Ig, Ih and IIa) while Cd+2 and Cu+2, but not Zn+2, 

induced 2 of the 3 α-crystallin/sHSP genes (αB-crystallin and HSP27).  αA-crystallin 

induction was only observed upon Cu+2 exposure.  The differential induction of these 

genes by specific metals indicates that the encoded proteins are likely to have different 

roles in lens regulation of, and/or protection against, specific metals.   

MTIIa was induced at 5-times higher levels than MTIg, indicating that MTIIa is  

the primary MT responding to metals in lens cells.  This is consistent with its reported 

increased expression in age-related cataract relative to clear lenses (Kantorow, Kays, 

Horwitz, Huang, Sun, Piatigorsky, and Carper 1998b) and its lens epithelium specificity 

(Oppermann, Zhang, Magabo, and Kantorow 2001b).  

The present data address the induction of these genes at concentrations of metals 

that result in no more than 10% cell death over a relatively short incubation time.  We 

cannot examine higher levels of these metals or longer exposure times since significant 
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cell lethality, and consequent loss of gene expression, was observed with higher metal 

concentrations or with longer exposure times (data not shown).  

Differential induction of these genes by specific metals suggests that the lens may 

employ metal-specific transcriptional mechanisms to regulate specific genes.  These 

responses are likely mediated by previously identified metal-responsive transcription 

factors.  One of these, that is known to regulate the expression of mouse MTs I and II in 

non-lens cells by binding to metal responsive regulatory elements (MREs) in the 

promoters of these genes, is the metal response element-binding transcription factor-1 

(MTF-1) (Gunes et al 1998).  MTF-1 has been shown to activate the expression of MTs I 

and II by specific heavy metals including Cd+2 and Cu+2 (Heuchel et al 1994).  MTF-1-

null mice lose their ability to express MTs I and II (Heuchel, Radtke, Georgiev, Stark, 

Aguet, and Schaffner 1994).  Like the MTs, the promoters for the α-crystallin/sHSPs, 

including αΒ-crystallin and HSP27, are known to contain binding sites for multiple 

stress-related transcription factors including a near perfect MRE that is located in the 

promoter of the rat αB-crystallin gene (Head, Hurwitz, and Goldman 1996).  They also 

contain other stress-associated regulatory elements including heat shock responsive 

elements (HSEs) and AP1-like consensus sequences (Frederikse PH 1994; Iwaki et al 

1990; Srinivasan and Bhat 1994).  

Multiple studies suggest that numerous metals are associated with cataract 

(Cuthbert 1998; Girelli, Corrocher, Bisceglia, Olivieri, De Franceschi, Zelante, and 

Gasparini 1995; Phelps Brown 1996; Ramakrishnan, Sulochana, Selvaraj, Abdul, 

Lakshmi, and Arunagiri 1995) and increased Cd+2 levels have been demonstrated in 

cataract versus clear human lenses (Ramakrishnan, Sulochana, Selvaraj, Abdul, Lakshmi, 

and Arunagiri 1995).  Although intact cataract lenses are not readily available, and no 
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conclusions regarding the presence of metals in human cataracts can be drawn from the 

present results, no differences were detected in the levels of 12 metals between young, 

middle-aged and old healthy lenses.  In contrast to the data reported for human cataract 

(Ramakrishnan, Sulochana, Selvaraj, Abdul, Lakshmi, and Arunagiri 1995), cadmium 

was not even detectable in the clear lenses analyzed in the present report suggesting that 

increased cadmium levels are specific to cataractous lenses.  We did, however, detect an 

81% decrease in iron levels between young and middle-aged versus old human lenses.  

Although altered iron regulation is associated with cataract (Phelps Brown 1996), the 

significance of this result is open to speculation.  We do not think that decreased iron 

results from sample contamination since no differences were detected in the 12 other 

metals examined; 3 separate groups of 5 lenses revealed similar iron levels and 

contamination is very unlikely to be reflected in the decreased level of iron detected in a 

single group.  Although the lens capsule was excluded from the lens metal contents 

reported, we are certain that our results would not be affected by inclusion of the lens 

capsule since its weight is insignificant relative to that of the rest of the lens.  Relative to 

the sensitivity of presently available techniques, the extremely large number of human 

lens epithelia/capsules that would be required to assay the metal content of this tissue 

(approximately 0.3 grams) makes this examination unfeasible.  

Future studies will be needed to determine the exact function for MTs and α-

crystallin/sHSPs induction in human lens cells.  It is likely that MTs are capable of 

protecting these cells against damage induced by toxic metals and possibly other insults 

associated with cataract since metallothioneins have been shown to protect numerous 

tissues, including retinal pigment epithelial cells (Lu, Hunt, Ganti, Davis, Dutt, Alam, 

and Hunt 2002), against toxic metals, oxidative stress and UV-light insults.  MTs are 
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likely to protect lens cells through direct metal binding and scavenging of free-radicals as 

they have been demonstrated to do in non-lens systems.  Indeed, it is estimated that MTs 

are 50-times more efficient as free-radical scavengers than reduced glutathione on a 

molar basis (Miura et al 1997).  The present data also provide evidence that α-

crystallin/sHSPs may have a role in lens metal protection.  α-crystallin/sHSPs protect 

against protein aggregation and it is possible that they are induced in response to metals 

to prevent protein aggregation or other damage resulting from metal exposure.  

Regardless of their exact functions, the inductions of these genes in human lens cells 

indicate that they are likely to play significant roles in lens metal regulation and/or 

protection and future studies will examine their ability to directly protect lens cells 

against metals and other cataract-associated insults.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 158

Chapter VII 
 

 

Methionine sulfoxide reductase A protects human eye lens cells against oxidative 
stress damage 
 
*John R. Hawse, *Marc Kantorow, Tracy L. Cowell, Sonia Benhamed, Gresin O. 
Pizarro, Venkat N. Reddy, J. F. Hejtmancik   
 
 
* Authors contributed equally to this work 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159

ABSTRACT 

Age-related cataract, an opacity of the eye lens, is the leading cause of visual impairment 

in the elderly and oxidative stress damage is believed to be a major factor in cataract 

formation.  One major feature of age-related cataract is oxidation of lens methionines that 

approach levels as high as 60% in cataract relative to clear human lenses.  Methionine 

oxidation results in loss of protein function but can be reversed through the action of 

methionine sulfoxide reductase A (MsrA) which has been directly implicated in oxidative 

stress protection and is an essential regulator of longevity in species ranging from E. coli 

to mice.  To establish a potential role for MsrA in protection of the lens against oxidative 

stress we have examined the levels and spatial expression patterns of MsrA in the human 

lens and tested the ability of MsrA to directly protect lens cells against oxidative stress 

insult.  In the present report, we establish that MsrA is abundantly expressed in the lens 

relative to other human tissues and is present throughout the human lens where it is likely 

to defend lens cells and their components against methionine oxidation.  We demonstrate 

that over-expression of MsrA directly protects lens cells against oxidative stress damage 

while silencing of the MsrA gene renders lens cells more sensitive to oxidative stress 

damage.  Collectively, these data implicate MsrA as a key player in lens protection 

against oxidative stress and in cataract formation. 

 

 

 

 

 

 



 160

INTRODUCTION  

 Age-related cataract is an opacity of the eye lens that is the major cause of world 

blindness (Kupfer 1994).  The lens consists of a single layer of epithelial cells that cover 

concentric layers of elongated fiber cells.  The fiber cells of the lens do not turnover and 

are some of the oldest cells in the body.  Damage to lens cells and their components 

ultimately results in protein aggregation and cataract.  Among the many factors involved 

in cataract formation, oxidative stress plays a major role through the oxidation and 

subsequent aggregation of lens proteins (Bodaness et al 1984; McNamara and Augusteyn 

1984; Smith et al 1997a; Zigler, Jr. et al 1989).  One major protein modification 

associated with oxidative stress in the lens is oxidation of methionine residues to 

methionine sulfoxide.  Methionine sulfoxide is barely detectible in young lenses but 

increases in the lens with age (Spector 1995).  Compellingly, in cataract relative to clear 

healthy lenses as much as 60% of membrane bound methionines are present in an 

oxidized form (Garner and Spector 1980).  Although it has been established that 

numerous important oxidative stress and other defense systems function in the lens 

including α-crystallin (Horwitz 1992), MnSOD (Matsui et al 2003), CuZnSOD (Behndig 

et al 2001), reduced glutathione (Harding et al 1996; Packer 1995; Rathbun et al 1993), 

glutathione reductase (Ikebe et al 1989), glutathione s-transferase (Yang et al 2002), 

thioltransferase (Xing and Lou 2002), catalase (Spector, Li, Ma, Sun, and Pavlidis 2002) 

and others, most of these systems are protective, do not reverse oxidative stress damage 

and none work directly on oxidized methionines.  Oxidation of methionine residues is 

associated with the loss of numerous protein activities and effects a multitude of 

biological functions (Brot et al 1981; Caldwell et al 1978; Ciorba et al 1997; Johnson and 

Travis 1979; Swaim and Pizzo 1988; Vogt 1995).  Thus, any protective system that could 
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prevent methionine oxidation and/or repair oxidized methionines would likely play a 

major role in lens maintenance and cataract formation. 

 Unlike most protein modifications, methionine sulfoxides can be converted back 

to reduced methionine through the action of a class of enzymes known as methionine 

sulfoxide reductases (Msrs) (Weissbach et al 2002) in a thioredoxin-dependent reaction 

involving both thioredoxin reductase and NADPH (Moskovitz et al 1996; Moskovitz et al 

1997b).  The Msr system is a key repair and defense system that is conserved throughout 

evolution and dictates lifespan in species ranging from E. coli to mice.  Oxidation of 

methionine residues results in two forms of methionine sulfoxide, an S- and R- form.  

Two separate classes of Msrs, referred to as MsrA and MsrB, have been identified that 

repair the S- and R-forms of methionine sulfoxide residues respectively (Weissbach, 

Etienne, Hoshi, Heinemann, Lowther, Matthews, St John, Nathan, and Brot 2002).  Over-

expression of MsrA in transgenic flies renders them more resistant to oxidative stress and 

dramatically increases their lifespan (Ruan et al 2002) and confers direct protection 

against peroxide-mediated oxidative stress in yeast and human T-lymphocytes 

(Moskovitz et al 1998a).  E. coli and yeast lacking MsrA are more sensitive to oxidative 

stress (Moskovitz et al 1995; Moskovitz et al 1997a) and deletion of the MsrA gene in 

mice results in increased sensitivity of these animals to oxidative stress in the form of 

100% oxygen treatment, shortens their lifespan by 10% under normal conditions and by 

50% under hyperoxic conditions and causes neurological impairment in conjunction with 

an increase in oxidized methionine content (Moskovitz et al 2001).   

 Increased methionine oxidation of lens proteins with age and in age-related 

human cataract suggests that loss of Msr function is associated with age-related cataract 

and that Msrs are likely to play key roles in defending the lens against oxidative stress 
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damage.  Significant MsrA activity has been detected in the lens epithelia, cortex and 

nucleus (Spector et al 1982) however, to date, the role of Msrs in the lens or in the 

development of age-related cataract has not been examined.  As a first step toward 

elucidating the role of Msrs in lens function, we have examined the levels and spatial 

expression patterns of MsrA in the human lens and have tested the ability of the enzyme 

to directly protect human lens cells against oxidative stress damage.  The results reveal 

that high levels of MsrA transcript and protein are found throughout the lens and suggest 

that MsrA is capable of directly protecting lens cells against oxidative stress-induced 

damage. 
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RESULTS 

 

MsrA mRNA is highly expressed by the human lens.   

 

 To determine the relative levels of MsrA expression in the human lens, RNA was 

isolated from 5 whole human lenses and MsrA transcript levels were compared with 18 

other human tissues by semi-quantitative RT-PCR followed by densitometric analysis.  

MsrA transcript was detected in all of the 19 tissues (Fig. 1A) suggesting ubiquitous 

MsrA expression in humans.  The highest levels were detected in the spleen (4.92) while 

smooth muscle tissue exhibited the lowest levels (0.04) (Fig. 1B).  MsrA was expressed 

at the forth highest level in whole human lenses (2.41) relative to the other tissues types 

examined (Fig. 1B). 

 

MsrA transcript and protein are expressed by the human lens.   

 

 Whole human lenses were microdissected and RNA was prepared from the lens 

epithelium and fiber cells and protein was extracted from lens epithelial, cortical and 

nuclear fiber cells.  MsrA transcript was detected in both the lens epithelium and fiber 

cells by semi-quantitative RT-PCR (Fig. 2A).  MsrA transcript was estimated to be 

expressed at approximately 2-fold higher levels in the lens epithelium relative to fiber 

cells after normalizing the PCR products to the corresponding GAPDH levels (Fig. 2A).  

Consistent with the transcript levels, MsrA protein was detected in the lens epithelium, 

cortical and nuclear fibers by western analysis (Fig. 2B).  As with the western analysis, 
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immunohistochemical staining suggests that MsrA is abundant in the lens epithelium 

with decreased levels in the cortical and nuclear fiber cells (Fig. 3 A and B). 

 

Over-expression of exogenous MsrA in HLEs confers resistance to H2O2-induced 

oxidative damage.   

 

 To determine the ability MsrA to confer resistance to H2O2-induced oxidative 

stress in human lens epithelial cells, MsrA over-expressing cell lines were created and 

exposed to H2O2.  The over-expressing cells have increased levels of MsrA mRNA (Fig. 

4A) and protein (Fig. 4B) relative to control cells.  Over-expression of MsrA protected 

HLEs against H2O2 induced stress by as much as 40% over concentrations ranging from 

800 µM � 950 µM relative to control cells (Fig. 4C) and a separate retrovirally 

transformed cell line that does not over-express MsrA. 

 

Silencing of endogenous MsrA causes increased sensitivity of HLEs to H2O2 induced 

oxidative damage.   

 

 The effects of decreased endogenous MsrA on the sensitivity of HLEs exposed to 

H2O2 was examined by siRNA gene silencing.  Significant decreases in MsrA transcript 

levels were detected within 24, 48 and 72 hours posttransfection relative to mock 

transfected control cells (Fig. 5A).  Silencing of endogenous MsrA rendered HLEs more 

sensitive to H2O2-induced stress at concentrations ranging from 570 µM to 720 µM by 

approximately 25% relative to mock transfected cells (Fig. 5B).  The differences in cell 

viability are not due to the presence of double-stranded RNA molecules since identical 
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differences were obtained when transfecting lens cells with a siRNA construct that is 

ineffective at reducing the transcript levels of MsrA.  Interestingly, decreased MsrA 

levels resulted in reduced lens cell viability by approximately 20% in the absence of 

H2O2 (Fig. 5B) suggesting that MsrA is required for normal lens cell function. 
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Figure 1.  Analysis of MsrA transcript levels in 19 different human tissues.  A). Ethidium 

bromide-stained gels showing the levels of MsrA in 100 ng of RNA isolated from the 

indicated tissues.  B). Table of corresponding densitometry values.  
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Co    Ma  Ce    Si    Fb    Fl    He   Kd  Sc    Pr    Sg    Sm  Sp    Te    St    Th    Tr    Ut    Wl    

Co    Ma   Ce    Si    Fb    Fl    He   Kd    Sc    Pr   Sg   Sm   Sp   Te     St   Th     Tr    Ut    

 MsrA  
(329bp) 

GAPDH 
(600bp) 

 
A) 

B)  
 T issue M srA GA P D H  A djusted M srA / G A P D H R ank

Co lon(Co) 11.6 11.2 1.03 9
B.M arrow(M a) 9.7 13.6 0.71 12
Cerebellum(Ce) 21.9 17.3 1.27 6
S.Intestine(Si) 11.2 10.7 1.05 8
Fetal Brain(Fb) 39.8 14.8 2.69 2
Fetal Liver(Fl) 20.5 8.9 2.3 5
Heart(He) 4.7 29.3 0.16 17
Kidney(Kd) 47.1 17.8 2.65 3
S.Cord(Sc) 13.3 21.2 0.63 14
Prostate(Pr) 5.3 12.1 0.44 16
S.gland(Sg) 2.4 5.8 0.41 17
S.muscle(Sm) 3.4 80.1 0.04 19
Spleen(Sp) 12.8 2.6 4.92 1
Testis(Te) 13.5 23.9 0.56 15
Stomach(St) 10 10.4 0.96 10
Thyro id(Th) 13.6 14.2 0.95 11
Trachea(Tr) 3.5 5.5 0.64 13
Uterus(Ut) 6.4 5.2 1.23 7
Who le  Lens(Wl) 23.9 9.9 2 .41 4
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Figure 2.  Spatial analysis of MsrA transcript and protein levels in micro-dissected 

human lenses.  A). Ethidium bromide-stained gels showing the relative levels of MsrA 

transcript between micro-dissected lens epithelial cells and fiber cells.  B). 

Immunoblotting of lens epithelium (E), cortex (C) and fiber (F) extracts with a MsrA-

specific antibody using (15 ug) of protein.  The blot and corresponding Coomassie 

stained gel are shown. 
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Figure 3.  Immunostaining of adult human lens with MsrA-specific antibody.  An 18-

year-old female human lens was immunostained with anti-MsrA antibody (A and C) or  

secondary antibody alone (B and D).  Peripheral (A and B) and posterior (C and D) 

portions of the lens are shown.  Lens capsule (Cap), epithelium (Epi) and fibers (Fib) are 

indicated. 
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Figure 4.  Over-expression of MsrA in human lens epithelial cells (SRA01/04).  A). 

Ethidium bromide stained gel showing the relative levels of MsrA detected between two 

separately constructed over-expressing cell lines (# 1 and #2) compared to control cells 

(C).  B).  Immunoblotting of 15 µg of protein extracts from control cells (C) and the two 

MsrA over-expressing cell lines (#1 and #2) with a mouse monoclonal antibody raised 

against the 14 amino acid V5 epitope fused to the C-terminal end of the recombinant 

MsrA protein.  C). Representative graphs depicting increased resistance to H2O2 stress 

treatments of the two MsrA over-expressing cell lines (yellow lines) relative to control 

cells (blue lines) using MTS cell viability assays.  H2O2 treatments were conducted for 24 

hours in serum free media.  The absorbance readings and H2O2 concentrations used are 

indicated. 
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Figure 5.  siRNA mediated MsrA gene suppression in human lens epithelial cells 

(SRA01/04).  A). Ethidium bromide stained gel showing MsrA specific gene suppression 

at 24, 48 and 72 hours post-transfection of siRNA relative to mock transfected control 

cells (C).  B). Representative graph depicting decreased resistance to H2O2 stress 48 

hours post-transfection of siRNA (yellow line) relative to mock transfected control cells 

(blue line) using MTS cell viability assays.  Untransfected cells are represented by �U�.  

H2O2 treatments were conducted for 24 hours in serum free media.  The absorbance 

reading and H2O2 concentrations used are indicated. 
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DISCUSSION 

The present data establish that MsrA is expressed at the fourth highest level in the human 

lens relative to 18 different human tissues.  Only the spleen, fetal brain and kidney 

exhibited higher levels of expression suggesting an important role for MsrA in lens 

maintenance.  High levels of MsrA transcript and protein were detected in the lens 

epithelium, and in the cortical and nuclear fibers where there is no protein turnover 

suggesting a role for MsrA in defending this region of the lens against oxidation.  MsrA 

has previously been shown to play a role in defense against oxidative stress in multiple 

non-lens systems (Singh and Moskovitz 2003; St John et al 2001; Yermolaieva et al 

2004a).  Here, we demonstrate that increased expression of MsrA protects lens cells from 

H2O2-induced oxidative stress while decreased expression of MsrA results in increased 

sensitivity to H2O2-induced oxidative stress.   

 MsrA transcript exhibited approximately 2-fold higher levels in the lens 

epithelium compared to the terminally differentiated lens fiber cells by semi-quantitative 

RT-PCR (Fig. 2A).  MsrA protein was also present at the highest levels in the lens 

epithelium compared to cortical fibers with detectable but lower levels present in the 

nucleus of the lens (Fig. 2B).  Immunohistochemical staining for MsrA in a whole human 

lens paralleled the western analysis of MsrA protein in micro-dissected portions of the 

lens as intense staining specific for MsrA was observed in the lens epithelium with lower 

levels detected in the cortical fibers (Fig. 3 A and B).  The high levels of MsrA 

expression in the lens epithelium correlates with the expression patterns of many other 

enzymes in the lens and points to an important role for MsrA in protection of lens 

epithelial cells against oxidative stress.  The lens epithelium is essential for the growth, 

differentiation, and homeostasis of the entire organ (Bloemendal H 1981; Piatigorsky 
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1981b), contains the highest levels of enzymes and transport systems in the lens (Reddan 

JR 1982; Reddy 1971a; Spector 1982b) and is also the first part of the lens exposed to 

oxidative stress (Reddan JR 1982; Spector 1982b).  Multiple studies suggest that the lens 

epithelium is capable of communicating with the underlying fiber cells (Bassnett et al 

1994; Rae et al 1996a) and direct damage to the lens epithelium and its enzyme systems 

is known to result in cataract formation (Harding JJ 1984; Hightower 1995; Phelps 

Brown 1996; Spector 1995).  Importantly, oxidative damage to the lens epithelium is 

believed to be an initiating factor of cataractogenesis (Spector 1995).  The high 

abundance of MsrA in the lens epithelium provides evidence that MsrA plays an 

important role in defending this lens region against oxidative stress insult.     

 Very intense staining for MsrA was also observed in the posterior fiber cells of 

the lens (Fig. 3 C and D) suggesting a particular function for MsrA in the lens fibers 

which are particularly prone to oxidative stress damage since they do not turnover and are 

incapable of replenishing damaged proteins.  The high levels of MsrA expression in these 

cells suggest that the enzyme is involved in the long term repair and maintenance of fiber 

cell protein most notably, the crystallins which constitute approximately 40% of the wet 

weight of the lens and are primarily responsible for lens transparency (Delaye and 

Tardieu 1983).   

 Previous studies have revealed the ability of MsrA over-expression to aid cells in 

defense against oxidative stress-induced damage including protection of PC12 cells from 

hypoxia induced cell death (Yermolaieva et al 2004b) and human T lymphocytes against 

the cytotoxic effects of H2O2 stress (Moskovitz et al 1998b).  Here we extend these 

studies to demonstrate that exogenous expression of MsrA in human lens epithelial cells 

confers resistance to H2O2 induced oxidative damage.  Over-expression of MsrA to levels 
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approaching a 10-fold increase relative to control cells (Fig. 4A) resulted in as much as a 

40% increase in cell viability compared to control cells over H2O2 concentrations ranging 

from 800 µM to 950 µM.  This effect appears to be specific for MsrA over-expression 

since multiple cell lines created from separately prepared viral stocks resulted in similar 

protection against H2O2 induced stress.  In addition, positive control cells created using a 

non-MsrA over-expressing virus exhibited nearly identical responses to H2O2 exposure as 

untransduced control cells.   

 The concentrations of H2O2 used in these experiments were chosen based on the 

results of a H2O2 kill curve using control lens cells.  Indeed, no decreases in cell viability 

were observed at concentrations under 750 µM and complete cell death was not observed 

until H2O2 concentrations reached upwards of 1 mM.  The concentrations of H2O2 used in 

this study to induce cell death fall well within the range of concentrations used in many 

other studies examining H2O2-induced cell death in multiple cell types including human 

lens epithelial cells (Paron et al 2003), human retinal pigmented epithelial cells (Matsui et 

al 2001) and human neuroblastoma cells (Ruffels et al 2004).   

 In addition to the protective effects that over-expression of MsrA confers to cells 

in the presence of oxidative stress, deletion of the MsrA gene in E. coli and yeast renders 

them more sensitive to oxidative stress conditions.  Similar effects are observed in 

mammals as MsrA deficient mice exhibit a decrease in lifespan of 10% under standard 

conditions and upwards of 50% under hyperoxic conditions (Moskovitz, Bar-Noy, 

Williams, Requena, Berlett, and Stadtman 2001).  The present work demonstrates that 

decreased levels of MsrA, through siRNA mediated gene silencing, in human lens 

epithelial cells results in an approximately 25% increase in H2O2 sensitivity over H2O2 

concentrations ranging from 570 µM to 720 µM.  The data also indicate that the 
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transfection process has negative effects on cell viability when compared to untransfected 

control cells.  However, multiple, separately conducted transfections, resulted in nearly 

identical responses of the cells to H2O2 and statistical analysis of each replicate produced 

the same differences in viability between mock and siRNA transfected cells.  In addition, 

cells transfected with a siRNA that is ineffective in decreasing the levels of MsrA 

exhibited the same responses to H2O2 as the mock transfected cells.  Taken together, the 

data indicate that the observed differences in cell viability are attributed to decreased 

levels of MsrA and are not the result of non-specific effects caused by the presence of 

double-stranded RNA molecules or the transfection process.  

 H2O2 is produced at a relatively high rate in cells as a byproduct of aerobic 

metabolism (Boveris and Chance 1973) and is known to induce cellular damage through 

the depletion of ATP, GSH and NADPH levels, by the generation of hydroxyl radicals 

through Fenton reactions (Henle and Linn 1997; Michiels et al 1994) and through DNA 

strand breakage (Dringen and Hamprecht 1997).  Mitochondria are a main target for 

reactive oxygen species damage and H2O2 is known to induce a mitochondrial 

permeability transition and disrupt the mitochondrial membrane potential resulting in the 

release of cytochrome C into the cytosol thereby triggering cells to undergo apoptosis 

through the activation of caspase 3 (Tada-Oikawa et al 1999).  MsrA is reported to 

consist of a cytosolic and mitochondrial form (Hansel et al 2002; Vougier et al 2003).  

Since the cell viability assays used in the present study measure mitochondrial activity 

and since loss of cell viability was observed even in the absence of oxidative stress, it is 

possible that MsrA protects mitochondria in HLEs.    

 The present studies establish a potential role for MsrA in defense of lens cells 

against oxidative stress.  These data, in conjunction with increased methionine sulfoxide 
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content in the human lens with age and upon cataract formation, provide evidence that 

MsrA is likely to play a major role in cataract formation.  Although the targets for MsrA 

action in the lens have yet to be defined, it has been shown that oxidation of α-crystallin 

results in loss of chaperone activity (Cherian and Abraham 1995; Smith et al 1997b) and 

that deletion of αA-crystallin results in cataract formation (Brady et al 1997c).  Another 

likely target for MsrA repair are the γ-crystallins which are rich in methionine residues 

and are one of the first lens proteins to aggregate in cataract (Phelps Brown 1996).  The 

role of MsrA in the lens is also likely to depend on the state of the reducing system and 

indeed NADPH levels decrease rapidly upon cataract formation in rats (Lee et al 1985).  

Future studies will examine the direct targets of MsrA in the lens, the role of the MsrA 

reducing system, and importantly, will establish a direct relationship between MsrA 

activity, methionine oxidation and cataract development. 
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Chapter VIII 
 

SUMMARY 
 

 
 The work that I have been involved with over the last four years, and as is 

presented in this document, has identified more than 1300 genes whose expression is 

altered between cataractous and clear human lenses, has demonstrated that numerous 

gene expression changes occur in the lens with age, has determined that the changes in 

gene expression that occur in cataracts are not likely to be an artifact of aging, has 

demonstrated that different isoforms of metallothioneins respond to the presence of 

metals in human lens epithelial cells in different ways, has indicated that the αA-

crystallin gene can be induced by an exogenous stress, has surveyed the metal  content of 

clear human lenses, has revealed the expression pattern of MsrA in the human lens, has 

indicated that MsrA is capable of protecting lens epithelial cells against oxidative stress 

and has implicated a role for MsrA in normal lens cell function even in the absence of 

stress. 

 Specifically, RT-PCR differential display identified decreased expression of 

ribosomal protein L21 in cataract relative to clear lenses.  Additional ribosomal protein 

subunits were also identified to exhibit decreased expression in cataracts relative to clear 

lenses including L15, L13a and L7a indicating that changes in protein synthesis and/or 

other pathways mediated by ribosomal proteins may play important roles in lens 

transparency.   

 Oligonucleotide microarray hybridization studies demonstrated that the 

expression levels of more than 1300 genes are altered in lens epithelia isolated from 
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human cataracts compared to clear lenses at the 2-fold or greater level.  Of these, 74 were 

increased and 241 were decreased at the 5-fold or greater level between cataracts and 

clear lenses.  These data identify multiple novel differences in gene expression between 

cataracts and clear lenses and functional clustering of the identified genes indicates that 

alterations in numerous biological pathways are associated with this disease including 

protein synthesis, oxidative stress, membrane transport, structural proteins, chaperones, 

cell cycle control proteins and transcriptional control genes.  Many of the processes 

represent metabolic systems designed to preserve lens homeostasis and their altered 

expression may reflect an inability of the lens to maintain its internal environment in the 

presence of stress leading to cataract formation.  Increases in transcriptional control genes 

may represent attempts by the lens to compensate for stresses related to cataract.   

 The data also demonstrate that numerous changes in gene expression in the lens 

are associated with the aging process; however, these alterations are not the same as those 

identified in cataracts.  Indeed, of the more than 1300 genes altered in cataract and the 

more than 700 genes altered with age in the lens, only 3 exhibit similar trends in 

expression between cataractous and aging human lenses.  Interestingly, functional 

clustering of the identified gene expression changes in the lens with age indicate that the 

majority of biological processes increased with age are actually decreased in cataract, and 

those that are decreased with age are actually increased in cataract.  These data suggest 

that the identified changes in gene expression in human cataracts are likely cataract 

specific and are not an artifact of the aging process.   

 Previous studies suggest that numerous metals are associated with cataract 

(Cuthbert 1998; Girelli, Corrocher, Bisceglia, Olivieri, De Franceschi, Zelante, and 

Gasparini 1995; Phelps Brown 1996; Ramakrishnan, Sulochana, Selvaraj, Abdul, 
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Lakshmi, and Arunagiri 1995) and increased cadmium levels have been detected in 

cataract relative to clear lenses (Ramakrishnan, Sulochana, Selvaraj, Abdul, Lakshmi, 

and Arunagiri 1995) and this work demonstrates that 5 metallothionein genes and 3 

chaperones/small heat shock genes, including αA-crystallin, are differentially induced by 

specific metals in human lens epithelial cells.  This is the first demonstration of αA-

crystallin induction by metals or other stresses indicating that αA-crystallin could be a 

stress-responsive gene that protects lens cells against metal associated damage.  No 

differences were detected in the levels of 12 metals between young, middle-aged and old 

clear human lenses with the exception of iron which exhibited decreased levels in old 

lenses.  Theses data provide evidence that metallothioneins and chaperones/small heat 

shock genes respond to the presence of metals in lens epithelial cells indicating that they 

may be capable of protecting lens cells against the toxic effects of heavy metals. 

 One major modification of lens components that persists in cataracts is oxidation 

of protein methionine residues (Garner and Spector 1980).  Oxidized methionines can be 

reduced to restore normal protein function by a class of enzymes known as the 

methionine sulfoxide reductases (Weissbach, Etienne, Hoshi, Heinemann, Lowther, 

Matthews, St John, Nathan, and Brot 2002).  The present data demonstrate that MsrA is 

expressed throughout the human lens, is capable of directly protecting lens epithelial cells 

against oxidative stress and is necessary for normal lens cell function.  These data, in 

conjunction with increased methionine sulfoxide content in the human lens upon cataract 

formation, provide evidence that MsrA is likely to play a major role in cataract formation. 

 Age-related cataract is a multifactorial disease with a poorly understood etiology 

and has been linked to many interrelated environmental, physiological and genetic 

components and it is therefore unlikely that any one study will identify a comprehensive 
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therapy for this disease.  However, age-related cataract is of tremendous importance as it 

is the leading cause of world blindness (Congdon et al 2003), is the most commonly 

performed surgical procedure in people over 65 and is the leading cause of morbidity and 

functional impairment in the elderly.  Currently, surgery is the only known treatment and 

accounts for approximately 12% of the entire Medicare budget (Stark et al 1989).  With 

an aging population, cataract is, and will continue to be, a major economic and quality of 

life concern, however, it has been estimated that a 10 year delay in the onset of cataract 

formation would halve the number of people requiring cataract surgery in their lifetime, 

dramatically increase the quality of life and significantly decrease the cost of health care 

(Kupfer 1994). 

 The results of the present studies have advanced our understanding of human 

cataract by establishing the groundwork of the molecular events surrounding this disease, 

identifying specific genes induced by the presence of metals in lens epithelial cells that 

are likely to protect against the toxic effects of heavy metal insult and through 

establishing a potential role for MsrA in defense of lens cells against oxidative stress 

through repair of oxidized methionine residues.  This work has identified a multitude of 

genes and their associated pathways that are altered in cataract and are therefore likely to 

be important for cataract formation.  The identification of multiple genes, their associated 

pathways and specific functions in the lens provide the basis for the molecular events 

associated with the presence of cataract and point to multiple targets for the development 

of therapeutic treatments to delay and/or prevent the onset of this disease.    
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