3,093 research outputs found

    Musical Instruments of Malaysia and the West Coast of America

    Get PDF
    n/

    Synchrotron Radiation From Radiatively Inefficient Accretion Flow Simulations: Applications to Sgr A*

    Full text link
    We calculate synchrotron radiation in three-dimensional pseudo-Newtonian magnetohydrodynamic simulations of radiatively inefficient accretion flows. We show that the emission is highly variable at optically thin frequencies, with order of magnitude variability on time-scales as short as the orbital period near the last stable orbit; this emission is linearly polarized at the 20-50 % level due to the coherent toroidal magnetic field in the flow. At optically thick frequencies, both the variability amplitude and polarization fraction decrease significantly with decreasing photon frequency. We argue that these results are broadly consistent with the observed properties of Sgr A* at the Galactic Center, including the rapid infrared flaring.Comment: Accepted for publication in Ap

    Thermal Equilibria of Optically Thin, Magnetically Supported, Two-Temperature, Black Hole Accretion Disks

    Full text link
    We obtained thermal equilibrium solutions for optically thin, two-temperature black hole accretion disks incorporating magnetic fields. The main objective of this study is to explain the bright/hard state observed during the bright/slow transition of galactic black hole candidates. We assume that the energy transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung, synchrotron, and inverse Compton scattering are considered as the radiative cooling processes. In order to complete the set of basic equations, we specify the magnetic flux advection rate. We find magnetically supported (low-beta), thermally stable solutions. In these solutions, the total amount of the heating via the dissipation of turbulent magnetic fields goes into electrons and balances the radiative cooling. The low-β\beta solutions extend to high mass accretion rates and the electron temperature is moderately cool. High luminosities and moderately high energy cutoffs in the X-ray spectrum observed in the bright/hard state can be explained by the low-beta solutions.Comment: 24 pages, 10 figures,accepted for publication in Astrophysical Journa

    Eigenvalue correlations on Hyperelliptic Riemann surfaces

    Full text link
    In this note we compute the functional derivative of the induced charge density, on a thin conductor, consisting of the union of g+1 disjoint intervals, J:=j=1g+1(aj,bj),J:=\cup_{j=1}^{g+1}(a_j,b_j), with respect to an external potential. In the context of random matrix theory this object gives the eigenvalue fluctuations of Hermitian random matrix ensembles where the eigenvalue density is supported on J.Comment: latex 2e, seven pages, one figure. To appear in Journal of Physics

    Sites of Biosynthesis of Outer and Inner Membrane Proteins of Neurospora crassa Mitochondria

    Get PDF
    Outer and inner membranes of Neurospora crassa mitochondria were separated by the combined swelling, shrinking, sonication procedure. Membranes were characterized by electron microscopy and by marker enzyme activities. A red carotenoid pigment was found to be concentrated in the outer membrane. The inner mitochondrial membrane was resolved into about 20 protein bands on polyacrylamide gel electrophoresis, whereas the outer membrane shows essentially one single protein band. Only negligible incorporation of radioactive amino acids occurs into outer membrane when isolated mitochondria are synthesizing polypeptide chains. In agreement with this observation labeling of outer membrane protein is almost entirely blocked, when whole Neurospora cells are incubated with radioactive amino acids in the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis. Finally, the essential electrophoretic protein band from outer membrane does not become labeled when mitochondria are incubated with radioactive amino acids either in vitro or in vivo in the presence of cycloheximide. It is concluded that the vast majority, if not all, of the outer membrane protein is synthesized by the cytoplasmic system and that polypeptide chains formed by the mitochondrial ribosomes are integrated into the inner mitochondrial membrane

    Vortices in Thin, Compressible, Unmagnetized Disks

    Full text link
    We consider the formation and evolution of vortices in a hydrodynamic shearing-sheet model. The evolution is done numerically using a version of the ZEUS code. Consistent with earlier results, an injected vorticity field evolves into a set of long-lived vortices, each of which has a radial extent comparable to the local scale height. But we also find that the resulting velocity field has a positive shear stress, . This effect appears only at high resolution. The transport, which decays with time as t^-1/2, arises primarily because the vortices drive compressive motions. This result suggests a possible mechanism for angular momentum transport in low-ionization disks, with two important caveats: a mechanism must be found to inject vorticity into the disk, and the vortices must not decay rapidly due to three-dimensional instabilities.Comment: 8 pages, 10 figures (high resolution figures available in ApJ electronic edition

    The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems

    Get PDF
    We investigate the relationship between age and chromospheric activity for 139 M dwarf stars in wide binary systems with white dwarf companions. The age of each system is determined from the cooling age of its white dwarf component. The current limit for activity-age relations found for M dwarfs in open clusters is 4 Gyr. Our unique approach to finding ages for M stars allows for the exploration of this relationship at ages older than 4 Gyr. The general trend of stars remaining active for a longer time at later spectral type is confirmed. However, our larger sample and greater age range reveals additional complexity in assigning age based on activity alone. We find that M dwarfs in wide binaries older than 4 Gyr depart from the log-linear relation for clusters and are found to have activity at magnitudes, colors and masses which are brighter, bluer and more massive than predicted by the cluster relation. In addition to our activity-age results, we present the measured radial velocities and complete space motions for 161 white dwarf stars in wide binaries.Comment: 22 pages including 9 figures and 5 tables. Accepted for publication in The Astronomical Journa

    Discovery of a New Nearby Star

    Get PDF
    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions > 5 arcsec/yr. We have determined a preliminary value for the parallax of 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbors. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.Comment: 5 pages, 3 figures. Submitted to ApJ Letter

    Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3

    Full text link
    There are numerous potential applications for superconducting tapes, based on YBa2Cu3O7-x (YBCO) films coated onto metallic substrates. A long established goal of more than 15 years has been to understand the magnetic flux pinning mechanisms which allow films to maintain high current densities out to high magnetic fields. In fact, films carry 1-2 orders of magnitude higher current densities than any other form of the material. For this reason, the idea of further improving pinning has received little attention. Now that commercialisation of conductors is much closer, for both better performance and lower fabrication costs, an important goal is to achieve enhanced pinning in a practical way. In this work, we demonstrate a simple and industrially scaleable route which yields a 1.5 to 5-fold improvement in the in-field current densities of already-high-quality conductors
    corecore