We obtained thermal equilibrium solutions for optically thin, two-temperature
black hole accretion disks incorporating magnetic fields. The main objective of
this study is to explain the bright/hard state observed during the bright/slow
transition of galactic black hole candidates. We assume that the energy
transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung,
synchrotron, and inverse Compton scattering are considered as the radiative
cooling processes. In order to complete the set of basic equations, we specify
the magnetic flux advection rate. We find magnetically supported (low-beta),
thermally stable solutions. In these solutions, the total amount of the heating
via the dissipation of turbulent magnetic fields goes into electrons and
balances the radiative cooling. The low-β solutions extend to high mass
accretion rates and the electron temperature is moderately cool. High
luminosities and moderately high energy cutoffs in the X-ray spectrum observed
in the bright/hard state can be explained by the low-beta solutions.Comment: 24 pages, 10 figures,accepted for publication in Astrophysical
Journa