620 research outputs found

    Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags

    Get PDF
    Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means

    Beautiful Mirrors at the LHC

    Get PDF
    We explore the "Beautiful Mirrors" model, which aims to explain the measured value of AFBbA^b_{FB}, discrepant at the 2.9σ2.9\sigma level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the ZZ. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the AFBbA_{FB}^b anomaly. We find that for mirror quark masses 500GeV,a14TeVLHCwith300fb1\lesssim 500 GeV, a 14 TeV LHC with 300 {\rm fb}^{-1} is required to reasonably establish the scenario and extract the relevant mixing parameters.Comment: version to be published in JHE

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    Get PDF
    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit

    A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency

    Get PDF
    Receptor agonism remains poorly understood at the molecular and mechanistic level. In this study, we identified a fully human anti-Fas antibody that could efficiently trigger apoptosis and therefore function as a potent agonist. Protein engineering and crystallography were used to mechanistically understand the agonistic activity of the antibody. The crystal structure of the complex was determined at 1.9 Å resolution and provided insights into epitope recognition and comparisons with the natural ligand FasL (Fas ligand). When we affinity-matured the agonist antibody, we observed that, surprisingly, the higher-affinity antibodies demonstrated a significant reduction, rather than an increase, in agonist activity at the Fas receptor. We propose and experimentally demonstrate a model to explain this non-intuitive impact of affinity on agonist antibody signalling and explore the implications for the discovery of therapeutic agonists in general

    Frequency, course and correlates of alcohol use from adolescence to young adulthood in a Swiss community survey

    Get PDF
    BACKGROUND: Few studies have analyzed the frequency of alcohol use across time from adolescence to young adulthood and its outcome in young adulthood. A Swiss longitudinal multilevel assessment project using various measures of psychopathology and psychosocial variables allowed for the study of the frequency and correlates of alcohol use so that this developmental trajectory may be better understood. METHOD: Alcohol use was studied by a questionnaire in a cohort of N = 593 subjects who had been assessed at three times between adolescence and young adulthood within the Zurich Psychology and Psychopathology Study (ZAPPS). Other assessment included questionnaire data measuring emotional and behavioural problems, life events, coping style, self-related cognitions, perceived parenting style and school environment, and size and efficiency of the social network. RESULTS: The increase of alcohol use from early adolescence to young adulthood showed only a few sex-specific differences in terms of the amount of alcohol consumption and the motives to drink. In late adolescence and young adulthood, males had a higher amount of alcohol consumption and were more frequently looking for drunkenness and feeling high. Males also experienced more negative consequences of alcohol use. A subgroup of heavy or problem drinkers showed a large range of emotional and behavioural problems and further indicators of impaired psychosocial functioning both in late adolescence and young adulthood. CONCLUSION: This Swiss community survey documents that alcohol use is problematic in a sizeable proportion of youth and goes hand in hand with a large number of psychosocial problems

    Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms

    Get PDF
    BACKGROUND: Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive. METHODS AND PRINCIPAL FINDINGS: We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world's tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport's rule for the birds of Sikkim region of the Himalaya. CONCLUSIONS AND SIGNIFICANCE: This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention

    Increased male reproductive success in Ts65Dn “Down syndrome” mice

    Get PDF
    The Ts65Dn mouse is trisomic for orthologs of about half the genes on Hsa21. A number of phenotypes in these trisomic mice parallel those in humans with trisomy 21 (Down syndrome), including cognitive deficits due to hippocampal malfunction that are sufficiently similar to human that “therapies” developed in Ts65Dn mice are making their way to human clinical trials. However, the impact of the model is limited by availability. Ts65Dn cannot be completely inbred and males are generally considered to be sterile. Females have few, small litters and they exhibit poor care of offspring, frequently abandoning entire litters. Here we report identification and selective breeding of rare fertile males from two working colonies of Ts65Dn mice. Trisomic offspring can be propagated by natural matings or by in vitro fertilization (IVF) to produce large cohorts of closely related siblings. The use of a robust euploid strain as recipients of fertilized embryos in IVF or as the female in natural matings greatly improves husbandry. Extra zygotes cultured to the blastocyst stage were used to create trisomic and euploid embryonic stem (ES) cells from littermates. We developed parameters for cryopreserving sperm from Ts65Dn males and used it to produce trisomic offspring by IVF. Use of cryopreserved sperm provides additional flexibility in the choice of oocyte donors from different genetic backgrounds, facilitating rapid production of complex crosses. This approach greatly increases the power of this important trisomic model to interrogate modifying effects of trisomic or disomic genes that contribute to trisomic phenotypes

    School, peer and family relationships and adolescent substance use, subjective wellbeing and mental health symptoms in Wales: a cross sectional study

    Get PDF
    Positive relationships with family, friends and school staff are consistently linked with health and wellbeing during adolescence, though fewer studies explore how these micro-systems interact to influence adolescent health. This study tests the independent and interacting roles of family, peer and school relationships in predicting substance use, subjective wellbeing and mental health symptoms among 11–16 year olds in Wales. It presents cross-sectional analyses of the 2013 Health Behaviour in School-aged Children survey, completed by 9055 young people aged 11–16 years. Multilevel logistic regression analyses are used to test associations of family communication, family support, relationships with school staff, school peer connectedness, and support from friends, with tobacco use, cannabis use, alcohol use, subjective wellbeing and mental health symptoms. Positive relationships with family and school staff were consistently associated with better outcomes. Support from friends was associated with higher use of all substances, while higher school peer connectedness was associated with better subjective wellbeing and mental health. Better relationships with school staff were most strongly associated with positive subjective wellbeing, and fewer mental health symptoms where pupils reported less family support. Support from friends was associated with higher cannabis use and worse mental health among pupils with lower family support. Relationships with family and school staff may be important in protecting young people against substance use, and improving wellbeing and mental health. Interventions focused on student-staff relationships may be important for young people with less family support. Interventions based on peer support should be mindful of potential harmful effects for pupils with less support from family
    corecore