1,297 research outputs found
Analisa Sistem Proteksi Petir pada Sutt 150 KV Menggunakan Software ATP
Electrical energy is very important today. The power company distributes the electric energy through the 150 kV overhead lines. The transmission line is a major part of the electrical energy distribution process. Overhead lines are supported by high towers, therefore the overhead lines and towers prone to lightning. The lightning current leads to the increasing voltage on the overhead lines. Surge arrester is a protective device used to protect overhead lines from lightning current. The analysis of the performance of the surge arrester against the lightning impulse requires the investigation in the placement of the surge arrester and the number of surge arresters installed. This study aims todetermine the magnitude of the voltage caused by lightning strikes by varying the location of the surge arrester on the overhead lines. This study was conducted by selecting a lightning strike at apeak voltage of 10 MV on a transmission tower using ATP software. This study indicated that the installation of surge arresters on the overhead lines for each tower leads to droping voltage verywell. The result of study shows that the best result was to install the arresters on each tower phase by decreasing the voltage at 1st tower by 0,4679 MV (92,81%), 2nd tower 0,5674 MV (92,64%), 3rd tower 1,2248 MV (85,79%), 4th tower 10 MV (0%), 5th tower 1,2322 MV (86,09%) and 6th tower 0,6219 MV (92,53%)
Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing
We describe a method for improving coherent control through the use of
detailed knowledge of the system's Hamiltonian. Precise unitary transformations
were obtained by strongly modulating the system's dynamics to average out
unwanted evolution. With the aid of numerical search methods, pulsed
irradiation schemes are obtained that perform accurate, arbitrary, selective
gates on multi-qubit systems. Compared to low power selective pulses, which
cannot average out all unwanted evolution, these pulses are substantially
shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR
techniques on homonuclear spin systems are used to demonstrate the accuracy of
these gates both in simulation and experiment. Simulations of the coherent
evolution of a 3-qubit system show that the control sequences faithfully
implement the unitary operations, typically yielding gate fidelities on the
order of 0.999 and, for some sequences, up to 0.9997. The experimentally
determined density matrices resulting from the application of different control
sequences on a 3-spin system have overlaps of up to 0.99 with the expected
states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of
Chemical Physics, in pres
Experimental Implementation of Logical Bell State Encoding
Liquid phase NMR is a general purpose test-bed for developing methods of
coherent control relevant to quantum information processing. Here we extend
these studies to the coherent control of logical qubits and in particular to
the unitary gates necessary to create entanglement between logical qubits. We
report an experimental implementation of a conditional logical gate between two
logical qubits that are each in decoherence free subspaces that protect the
quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
Quantum Simulations on a Quantum Computer
We present a general scheme for performing a simulation of the dynamics of
one quantum system using another. This scheme is used to experimentally
simulate the dynamics of truncated quantum harmonic and anharmonic oscillators
using nuclear magnetic resonance. We believe this to be the first explicit
physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to
appear in Phys. Rev. Let
A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy
Quantum error correcting codes enable the information contained in a quantum
state to be protected from decoherence due to external perturbations. Applied
to NMR, quantum coding does not alter normal relaxation, but rather converts
the state of a ``data'' spin into multiple quantum coherences involving
additional ancilla spins. These multiple quantum coherences relax at differing
rates, thus permitting the original state of the data to be approximately
reconstructed by mixing them together in an appropriate fashion. This paper
describes the operation of a simple, three-bit quantum code in the product
operator formalism, and uses geometric algebra methods to obtain the
error-corrected decay curve in the presence of arbitrary correlations in the
external random fields. These predictions are confirmed in both the totally
correlated and uncorrelated cases by liquid-state NMR experiments on
13C-labeled alanine, using gradient-diffusion methods to implement these
idealized decoherence models. Quantum error correction in weakly polarized
systems requires that the ancilla spins be prepared in a pseudo-pure state
relative to the data spin, which entails a loss of signal that exceeds any
potential gain through error correction. Nevertheless, this study shows that
quantum coding can be used to validate theoretical decoherence mechanisms, and
to provide detailed information on correlations in the underlying NMR
relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx
package
Feedback control of spin systems
The feedback stabilization problem for ensembles of coupled spin 1/2 systems
is discussed from a control theoretic perspective. The noninvasive nature of
the bulk measurement allows for a fully unitary and deterministic closed loop.
The Lyapunov-based feedback design presented does not require spins that are
selectively addressable. With this method, it is possible to obtain control
inputs also for difficult tasks, like suppressing undesired couplings in
identical spin systems.Comment: 16 pages, 15 figure
Algorithm engineering for optimal alignment of protein structure distance matrices
Protein structural alignment is an important problem in computational
biology. In this paper, we present first successes on provably optimal pairwise
alignment of protein inter-residue distance matrices, using the popular Dali
scoring function. We introduce the structural alignment problem formally, which
enables us to express a variety of scoring functions used in previous work as
special cases in a unified framework. Further, we propose the first
mathematical model for computing optimal structural alignments based on dense
inter-residue distance matrices. We therefore reformulate the problem as a
special graph problem and give a tight integer linear programming model. We
then present algorithm engineering techniques to handle the huge integer linear
programs of real-life distance matrix alignment problems. Applying these
techniques, we can compute provably optimal Dali alignments for the very first
time
Transiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: a brown dwarf transiting companion
We report the discovery by the CoRoT space mission of a transiting brown
dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a
radius of 1.12 +0.30 -0.15 Rjup, a mass of 63.3 +- 4.1 Mjup, and is thus the
second transiting companion lying in the theoretical mass domain of brown
dwarfs. CoRoT-15b is either very young or inflated compared to standard
evolution models, a situation similar to that of M-dwarfs stars orbiting close
to solar-type stars. Spectroscopic constraints and an analysis of the
lightcurve favors a spin period between 2.9 and 3.1 days for the central star,
compatible with a double-synchronisation of the system.Comment: 7 pages, 6 figures, accepted in A&
- âŠ