90 research outputs found

    12R-lipoxygenase deficiency disrupts epidermal barrier function

    Get PDF
    12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) constitute a novel LOX pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis. We show that 12R-LOX deficiency in mice results in a severe impairment of skin barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinocytes, but is associated with ultrastructural anomalies in the upper granular layer, suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes from skin of 12R-LOX–deficient mice show increased fragility. Lipid analysis demonstrates a disordered composition of ceramides, in particular a decrease of ester-bound ceramide species. Moreover, processing of profilaggrin to monomeric filaggrin is impaired

    NEMO-Binding Domain Peptide Inhibits Constitutive NF- B Activity and Reduces Tumor Burden in a Canine Model of Relapsed, Refractory Diffuse Large B-Cell Lymphoma

    Get PDF
    Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL

    Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica

    Get PDF
    <div><p>Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. <i>GORAB</i>, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the <i>Gorab</i><sup><i>Null</i></sup> full knockout, <i>Gorab</i> was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only <i>Gorab</i><sup>Prx1</sup> and <i>Gorab</i><sup>Runx2</sup> mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of <i>Gorab</i><sup><i>Null</i></sup> mutants and in bone of <i>Gorab</i><sup>Prx1</sup> mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from <i>Gorab</i><sup><i>Null</i></sup> mutants. In bone from <i>Gorab</i><sup>Prx1</sup> mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured <i>GORAB</i>-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in <i>Gorab</i><sup>Prx1</sup> bone tissue leading to enhanced downstream signalling, which was reproduced in <i>GORAB</i>-deficient fibroblasts. Our data suggest that the loss of <i>Gorab</i> primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.</p></div

    A standardized and reproducible method to measure decision-making in mice.

    Get PDF
    Abstract Progress in neuroscience is hindered by poor reproducibility of mouse behavior. Here we show that in a visual decision making task, reproducibility can be achieved by automating the training protocol and by standardizing experimental hardware, software, and procedures. We trained 101 mice in this task across seven laboratories at six different research institutions in three countries, and obtained 3 million mouse choices. In trained mice, variability in behavior between labs was indistinguishable from variability within labs. Psychometric curves showed no significant differences in visual threshold, bias, or lapse rates across labs. Moreover, mice across laboratories adopted similar strategies when stimulus location had asymmetrical probability that changed over time. We provide detailed instructions and open-source tools to set up and implement our method in other laboratories. These results establish a new standard for reproducibility of rodent behavior and provide accessible tools for the study of decision making in mice

    Dendritic coincidence detection of EPSPs and action potentials

    No full text
    We describe a mechanism for coincidence detection mediated by the interaction between backpropagating action potentials and EPSPs in neocortical pyramidal neurons. At distal dendritic locations, appropriately timed EPSPs or oscillations could increase the amplitude of backpropagating action potentials by three- to fourfold. This amplification was greatest when action potentials occurred at the peak of EPSPs or dendritic oscillations and could lead to somatic burst firing. The increase in amplitude required sodium channel activation but not potassium channel inactivation. The temporal characteristics of this amplification are similar to those required for changes in synaptic strength, suggesting that this mechanism may be involved in the induction of synaptic plasticity

    Professor Dr. Felix Ascher 75 Jahre alt

    No full text
    corecore