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Progress in science requires standardized assays whose results can be readily shared, compared,             
and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience,            
particularly for measurements of mouse behavior. Here we show that a standardized task to probe               
decision-making in mice produces reproducible results across multiple laboratories. We designed a            
task for head-fixed mice that combines established assays of perceptual and value-based decision             
making, and we standardized training protocol and experimental hardware, software, and           
procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5               
million mouse choices into a publicly available database. Learning speed was variable across mice              
and laboratories, but once training was complete there were no significant differences in behavior              
across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past              
successes and failures, and on estimates of stimulus prior probability to guide their choices. These               
results reveal that a complex mouse behavior can be successfully reproduced across multiple             
laboratories. They establish a standard for reproducible rodent behavior, and provide an            
unprecedented dataset and open-access tools to study decision-making in mice. More generally,            
they indicate a path towards achieving reproducibility in neuroscience through collaborative           
open-science approaches. 
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Introduction 
Progress in science depends on reproducibility and thus requires standardized assays whose methods and              
results can be readily shared, compared, and reproduced across laboratories ​(Baker, 2016; Ioannidis,             
2005)​. Such assays are common in fields such as astronomy ​(Fish et al., 2016; The H.E.S.S. Galactic plane                  
survey, 2018)​, physics ​(CERN Education, Communications and Outreach Group, 2018)​, genetics           
(Dickinson et al., 2016)​, and medicine ​(Bycroft et al., 2018)​, and perhaps rarer in fields such as sociology                  
(Camerer et al., 2018 ​) and psychology ​(Forscher et al., 2020; Frank et al., 2017; Makel et al., 2012 ​)​. They                   
are also rare in neuroscience, a field that faces a reproducibility crisis ​(Baker, 2016; Botvinik-Nezer et al.,                 
2020; Button et al., 2013)​.  

Reproducibility has been a particular concern for measurements of mouse behavior ​(Kafkafi et al., 2018)​.               
Though the methods can be generally reproduced across laboratories, the results can be surprisingly              
different (“methods reproducibility” vs. “results reproducibility”, Goodman, Fanelli and Ioannidis, 2016). Even            
seemingly simple assays that probe responses to pain or stress can be swayed by extraneous factors such                 
as the identity or sex of the experimenter. Behavioral assays can be difficult to reproduce across                
laboratories even when they share a similar apparatus ​(Chesler et al., 2002; Crabbe et al., 1999; Sorge et                  
al., 2014; Tuttle et al., 2018)​.  

The growing arsenal of genetic, imaging, and physiological tools available for mouse brains facilitate              
mechanistic studies of decision making ​(Carandini and Churchland, 2013; Glickfeld et al., 2014; O’Connor              
et al., 2009)​. The International Brain Laboratory is a collaboration that aims to leverage these approaches                
by exploring the same mouse behavior in multiple laboratories ​(The International Brain Laboratory, 2017)​. It               
is thus crucial that the relevant behavioral assays be reproducible both in methods and in results. Equally, it                  
is crucial that data and techniques be made available to the broader community in an open-science                
approach ​(Beraldo et al., 2019; Charles et al., 2020; Forscher et al., 2020; Koscielny et al., 2014; Poldrack                  
and Gorgolewski, 2014; de Vries et al., 2020)​. 

Studying decision-making requires a task that places specific sensory, cognitive, and motor demands over              
hundreds of trials, affording strong constraints to behavior​. The task should be complex enough to expose                 
the neural computations that support decision-making but simple enough for mice to learn, and easily               
extendable to study further aspects of perception and cognition. Moreover, we sought to have ready access                
to the brain for neural recordings and manipulations, so we considered tasks that involve head fixation.  

To meet these criteria we defined a task that combines two established assays: the classical               
“two-alternative forced-choice” perceptual task ​(Carandini and Churchland, 2013; Tanner Jr. and Swets,            
1954)​, and a stimulus-probability manipulation analogous to the “two-armed bandit” task ​(Corrado et al.,              
2005; Fan et al., 2018; Herrnstein, 1961; Lau and Glimcher, 2005; Miller et al., 2019)​. A similar combination                  
of visual detection task with probability manipulation has been used in primates to study visual selective                
attention ​(Cohen and Maunsell, 2009)​. In the task, mice detect the presence of a visual grating of variable                  
contrast to their left or right, and report the perceived location with a simple movement: by turning a steering                   
wheel ​(Burgess et al., 2017)​. The probability of stimulus appearance at the two locations is asymmetric and                 
changes across blocks of trials. Mice thus make decisions by using both their vision and their recent                 
experience. When the visual stimulus is evident (contrast is high), they should mostly use vision, and when                 
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the visual stimulus is ambiguous (contrast is low or zero), they should consider prior information ​(Whiteley                
and Sahani, 2008)​ and choose the side that has recently been more likely. 

We here present results from a large cohort of mice trained in the task, demonstrating reproducible methods                 
and reproducible results across laboratories. Mice learned the task in all laboratories, though often at a                
different pace. After learning they performed the task in a comparable manner, and with no significant                
difference across laboratories. Mice in different laboratories adopted a comparable reliance on visual             
stimuli, on past successes and failures, and on estimates of stimulus prior probability.  

To facilitate reuse and reproducibility, we describe and share the hardware and software components and               
the experimental protocols. We established an open-access data architecture pipeline ​(International Brain            
Laboratory et al., 2019) and use it to release the >5 million mouse choices at ​data.internationalbrainlab.org ​.                
These results reveal that a complex mouse behavior can be successfully reproduced across laboratories,              
enabling collaborative studies of brain function in behaving mice.  

Results 
To train mice consistently within and across laboratories we developed a standardized training pipeline              
(​Figure 1a ​). First, we performed surgery to implant a headbar for head-fixation (​Appendix 1​). During the                
subsequent recovery period we handled the mice and weighed them daily. Following recovery, we put mice                
on water control and habituated them to the experimental setup (​Appendix 2​). Throughout these steps, we                
checked for adverse effects such as developing a cataract during surgery or pain after surgery or                
substantial weight loss following water control (4 mice excluded out of 210) ​(Guo et al., 2014)​.  

Mice were then trained in two stages: first they learned a ​basic task​, where the probability of a stimulus                   
appearing on the left or the right was equal (50:50), and then they learned the ​full task​, where the probability                    
of stimuli appearing on the left vs. right switched in blocks of trials between 20:80 and 80:20. Out of 206                    
mice that started training, 140 achieved proficiency in the basic task, and 98 in the full task (26 are still in                     
training at the time of writing, see Figure 1 - Supplement 1d for training progression and proficiency criteria).                  
The basic task is purely perceptual: the only informative cue is the visual stimulus. The full task instead                  
invites integration of perception with recent experience: when stimuli are ambiguous it is best to choose the                 
more likely option. 

To facilitate reproducibility, we standardized multiple variables, measured multiple other variables, and            
shared the behavioral data in a database that we inspected regularly. By providing standards and               
guidelines, we sought to control variables such as mouse strain and provider, age range, weight range,                
water access, food protein and fat. We did not attempt to standardize other variables such as light-dark                 
cycle, temperature, humidity, and environmental sound, but we documented and measured them regularly             
(​Figure 1 - Supplement 1a ​) (Voelkl et al., 2020). Data were shared and processed across the collaboration                 
according to a standardized web-based pipeline ​(International Brain Laboratory et al., 2019)​. This pipeline              
included a colony management database that stored data about each session and mouse (e.g., session               
start time, animal weight, etc.), a centralized data repository for files generated in the task (e.g. behavioral                 
responses and compressed video and audio files), and a platform which provided automated analyses and               
daily visualizations (​data.internationalbrainlab.org ​) (Yatsenko et al., 2018). 
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Figure 1. Standardized pipeline and apparatus, and training progression in the basic task. a ​, The pipeline for mouse                  
surgeries and training. The number of animals at each stage of the pipeline is shown in bold. ​b​, ​Schematic of the ​task, showing the                        
steering wheel and the visual stimulus moving to the center of the screen vs. the opposite direction, with resulting reward vs.                     
timeout. ​c​, CAD model of the behavioral apparatus. A 3D rendered video of the CAD model can be found on ​here ​. ​d​, Performance                       
of an example mouse (KS014, from Lab 1) throughout training. Squares indicate choice performance for a given stimulus on a given                     
day. Color indicates the percentage of right ( ​red​) and left ( ​blue​) choices. Empty squares indicate stimuli that were not presented.                    
Negative contrasts denote stimuli on the left, positive contrasts denote stimuli on the right. ​e, ​Example sessions from the same                    
mouse. ​Vertical lines indicate when the mouse reached the session-ending criteria based on trial duration ( ​top​) and accuracy on                   
high-contrast trials ( ​bottom​) averaged over a rolling window of 10 trials. ​f​, Psychometric curves for those sessions, showing the                   
fraction of trials in which the stimulus on the right was chosen (rightward choices) as a function of stimulus position and contrast                      
(difference between right and left, i.e. positive for right stimuli, negative for left stimuli). Circles show the mean and error bars show                      
± 68% confidence intervals. The training history of this mouse can be explored at ​this interactive web page​.  
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Mice were trained in a standardized setup involving a steering wheel placed in front of a screen (​Figure                  
1b,c ​). The visual stimulus, a grating, appeared at variable contrast on the left or right half of the screen. The                    
stimulus position was coupled with movements of the response wheel, and mice indicated their choices by                
turning the wheel left or right to bring the grating to the center of the screen ​(Burgess et al., 2017)​. Trials                     
began after the mouse held the wheel still for 0.2-0.5 s and were announced by an auditory “go cue”.                   
Correct decisions were rewarded with sweetened water (10% sucrose solution), whereas incorrect            
decisions were indicated by a noise burst and were followed by a longer inter-trial interval (2 s) ​(Guo et al.,                    
2014, ​Figure 1 - Supplement 2 ​)​. The experimental setups included systems for head-fixation, visual and               
auditory stimuli presentation, and recording of video and audio (​Figure 1c​). These were standardized and               
based on open-source hardware and software (​Appendix 3​).  

Training progression in the basic task 
We begin by describing training in the basic task, where stimuli on the left vs. right appeared with equal                   
probability. This version of the task is purely visual, in that no other information can be used to increase                   
expected reward. 

The training proceeded in automated steps, following predefined criteria (​Figure 1d​, ​Appendix 2 ​). Initially,              
mice experienced only easy trials with highly visible stimuli (100% and 50% contrast). As performance               
improved, the stimulus set progressively grew to include contrasts of 25%, 12%, 6%, and finally 0% (​Figure                 
1d, Figure 1 - Supplement 1b-c ​). For a typical mouse (​Figure 1d​), according to this automated schedule,                 
stimuli with 25% contrast were introduced in training day 10, 12% contrast in Day 12, and the remaining                  
contrasts in Day 13. On this day the 50% contrast trials were dropped, to increase the proportion of                  
low-contrast trials. To reduce response biases, incorrect responses on easy trials (high contrast) were more               
likely to be followed by a “repeat trial” with the same stimulus contrast and location.  

The duration of training sessions varied according to performance (​Figure 1e​). Sessions lasted at most 90                
minutes and ended according to a criterion based on number of trials, total duration, and response times                 
(​Figure 1 - Supplement 3 ​). For instance, for the example mouse, session on Day 2 ended when 45 min                   
elapsed with <400 trials; sessions on Days 7, 10, and 14 ended when trial duration increased to five times                   
above baseline (​Figure 1e​).  

To encourage vigorous motor responses and to increase the number of trials, the automated protocol               
gradually increased the motor demands and reduced reward volume. At the beginning of training, the wheel                
gain was high (8 deg/mm), making the stimuli highly responsive to small wheel movements, and rewards                
were large (3 μL). As training progressed, the wheel gain progressively decreased to 4 deg/mm and the                 
reward decreased to 1.5 μL, according to a predefined schedule (​Figure 1 - Supplement 1b-c​). 

Mouse performance gradually improved until it provided high-quality visual psychometric curves (​Figure 1f​).             
At first, performance hovered around or below 50%. It could be even below 50% because of no-response                 
trials (which were labeled as incorrect trials in our analyses), systematic response biases, and the               
bias-correcting procedure that tended to repeat trials following errors on easy trials (at high contrast).               
Performance then typically increased over days to weeks until mice made only rare mistakes (lapses) on                
easy trials (e.g. ​Figure 1f ​, Day 14).  
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Animals were considered to have reached proficiency in the basic task when they had been introduced to all                  
contrast levels, and had met predefined performance criteria. These criteria required psychometric curves             
to satisfy minimal conditions for absolute response bias (< 16%, units of contrast), contrast sensitivity               
(threshold < 19%) and lapse rate (total < 0.2 on both sides) across three consecutive training sessions                 
(​Figure 1 - Supplement 1d ​). The training procedure, performance criteria, and psychometric parameters             
are described in detail in ​Appendix 2​. 

Training succeeded but with different rates across mice and laboratories 
The training procedures succeeded in all laboratories, but the duration of training varied across mice and                
laboratories (​Figure 2​). There was substantial variation among mice, with the fastest learners achieving              
basic task proficiency in 3 days, and the slowest after 59 days (​Figure 2a-c​). The average training took 18.4                   
± 13.0 days (s.d., n = 140, ​Figure 2b ​). The number of days needed to achieve basic task proficiency was                    
different across laboratories (​Figure 2c​, p < 0.001, Kruskal-Wallis nonparametric test followed by a              
post-hoc Dunn’s multiple comparisons test). Some labs had homogeneous learning rates (e.g., Lab 2              
within-lab interquartile range of 8 days), while other labs had larger variability (e.g., Lab 6 interquartile range                 
of 22 days).  

 

Figure 2. Learning rates differed across mice and laboratories. a​, Performance curves for each mouse, for each laboratory.                  
Performance was measured on easy trials (50% and 100% contrast). Each panel represents a different lab, and each thin curve                    
represents a mouse. The transition from ​light gray ​to ​dark gray ​indicates when each mouse achieved proficiency in the basic task.                     
Black ​, performance for example mouse in Fig. 1. Thick colored lines show the lab average. Curves stop at day 40, when the                      
automated training procedure suggests that mice be dropped from the study if they have not learned. ​b, Average performance curve                    
of each laboratory across training days. ​c​, Training times for each mouse compared to the distribution across all laboratories                   
( ​black​). ​Boxplots ​show median and quartiles. ​d, ​Cumulative proportion of mice to have reached proficiency as a function of training                    
day. ​Black curve ​ denotes average across mice and laboratories. 

The variability in performance decreased as training progressed, but it did not disappear completely.              
Variability in performance was larger in the middle of their training time than towards the end. For example,                  
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the variation across mice (s.d.) of performance on easy trials was 19.1% (mean 80.7%​) on day 15 ​, but                  
10.1% (​mean 91.1%) on day 40 (​Figure 2 - Supplement 1​). Our procedures succeeded in training tens of                  
mice in each laboratory (​Figure 2d​). Indeed, there was a 80% probability that mice would learn the task                  
within the 40 days that were usually allotted, and when mice were trained for a longer duration, the success                   
rate rose even further (​Figure 2d​). There was, however, variability in learning rates across mice and                
laboratories. This variability is intriguing and would present a challenge for projects that aim to study                
learning. We next ask whether the behavior of trained mice was consistent and reproducible across               
laboratories.  

 

Figure 3. Performance in the basic task was indistinguishable across laboratories. a​, Psychometric curves across mice and                 
laboratories for the three sessions at which mice achieved proficiency on the basic task. Each curve represents a mouse ( ​gray​).                    
Black curve represents the example mouse in Fig. 1. Thick colored lines show the lab average. ​b​, Average psychometric curve for                     
each laboratory. Circles show the mean and error bars ± 68% CI. ​c​, performance on easy trials (50 and 100% contrasts) for each                       
mouse, plotted per lab and over all labs. Colored dots show individual mice and boxplots show the median and quartiles of the                      
distribution. ​d​- ​e​, Same, for visual threshold and bias. ​f​, Performance of a Naive Bayes classifier trained to predict from which lab                     
mice belonged, based on the measures in ​c​- ​e​. We included the timezone of the laboratory as a positive control and generated a                      
null-distribution by shuffling the lab labels. Dashed black line represents chance-level classification performance. Violin plots show                
the full distribution of the 2,000 random sub-samples of 8 mice per laboratory, the white dots show the median, thick lines the                      
interquartile range and thin lines 1.5x the interquartile range.  

Performance in the basic task was indistinguishable across laboratories 
Once mice achieved basic task proficiency, multiple measures of performance became indistinguishable            
across laboratories (​Figure 3a-e​). We first examined the psychometric curves for the three sessions leading               
up to proficiency, which showed a stereotypical shape across mice and laboratories (​Figure 3a​). The               
average across mice of these psychometric curves was similar across laboratories (​Figure 3b​). The lapse               
rates (i.e., the errors made in response to easy contrasts of 50% and 100%) were low (9.5 ± 3.6%, ​Figure                    
3c​) with no significant difference across laboratories. The slope of the curves, which measures contrast               
sensitivity, was also similar across laboratories, at 14.3 ± 3.8 (s.d., n = 7 laboratories, ​Figure 3d ​). Finally,                  
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the horizontal displacement of the curve, which measures response bias, was small at 0.3 ± 8.4 (s.d., n = 7,                    
Figure 3e ​). None of these measures showed a significant difference across laboratories, either in median               
(performance: p = 0.63, threshold: p = 0.81, bias: p = 0.81, ​FDR corrected Kruskal-Wallis test) or in variance                   
(performance: p = 0.09, threshold: p = 0.57, bias: p = 0.57, FDR corrected Levene’s test). Indeed, the                  
within-lab consistency of choice fractions was not larger than expected by chance (​Figure 3 - Supplement                
1a​).  

Variations across laboratories were also small in terms of trial duration and number of trials per session,                 
even though no specific effort was made to harmonize these variables (​Figure 3 - Supplement 2​). The                 
median time from stimulus onset to feedback (trial duration, a coarse measure of reaction time) was 468 ±                  
221 ms, showing some differences across laboratories (​Figure 3 - Supplement 2​, p = 0.004, Kruskal-Wallis                
nonparametric test). Mice on average performed 719 ± 223 trials per session (​Figure 3 - Supplement 2​).                 
This difference was significant (p < 10 ​-6​, one-way ANOVA) but only in one laboratory relative to the rest. It                   
may reflect different experimenter decisions on when to end training sessions: our standard protocol              
suggested but did not mandate when to end a session. 

Similar results were observed in the behavior of the mice during subsequent sessions. We compared the                
behavioral performance across laboratories in the first three sessions of the full task (described later).               
Again we found that behavior was not significantly different across laboratories (​Figure 3 - Supplement 3​).  

Variation in performance across laboratories was so low that we were not able to assign a mouse to a                   
laboratory based on performance. Having found little variation in behavioral variables when considered one              
by one (​Figure 3c-e​), we next asked whether mice from different laboratories may exhibit characteristic               
combinations of these variables. We thus trained a Naive Bayes classifier ​(Pedregosa et al., 2011)​, with                
2000 random sub-samples of 8 mice per laboratory, to predict lab membership from these behavioral               
variables. First, we tested whether the classifier showed the expected behavior when provided with an               
informative variable: the time zone in which animals were trained. In this positive control, the classifier                
performed above chance (​Figure 3f​, ​Positive control​) and the confusion matrix showed clusters of labs               
which are located in the same time zone (​Figure 3 - Supplement 4c​). Next, we generated a null-distribution                  
by shuffling the lab labels (​Figure 3f​, ​Shuffle​). Finally we used the classifier to predict in which lab a mouse                    
was trained. The classifier failed to identify the laboratory of origin of the mice: it performed at chance level                   
(​Figure 3f ​, ​Decoding of lab​), with an F1 score of 0.12 ± 0.051, and a 95th percentile of the distribution                    
included the chance level of 0.11 (mean of the null-distribution). The most common classifications were               
off-diagonal in the confusion matrix, and hence incorrect (​Figure 3 - Supplement 4​). Similar results were                
obtained with two other classifier algorithms (​Figure 3 - Supplement 4​).  

We repeated this analysis for the first three sessions of the full task. Again, there was no significant                  
difference across laboratories on the performance, visual threshold, and bias, and lab membership could              
not be identified above chance by classifiers (​Figure 3 - Supplement 3​). Moreover, as we will see in the                   
next section, performance remained indistinguishable across laboratories also in the full version of the task. 

Performance in the full task was indistinguishable across laboratories  
After training the mice in the purely perceptual, basic task, we introduced them to the ​full task​, where                  
optimal performance requires integration of perception with recent experience (​Figure 4a​,​b ​). Specifically,            
we introduced block-wise biases in the probability of stimulus location, and therefore the more likely correct                
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choice. Sessions started with a block of unbiased trials (50:50 probability of left vs. right) and then                 
alternated between blocks of variable length (20-100 trials) biased towards the right (20:80 probability) or               
towards the left (80:20 probability) (​Figure 4a​). The transition between blocks was not signaled, so the mice                 
had to estimate a prior for stimulus location based on recent task statistics. This task invites the mice to                   
integrate information across trials and to use this prior knowledge in their perceptual decisions.  

 

Figure 4. Mice successfully integrate priors into their decisions and task strategy. a, ​Block structure in an example session.                   
Each session started with 90 trials of 50:50 prior probability, followed by alternating 20:80 and 80:20 blocks of varying length.                    
Presented stimuli (grey, 10-trial running average) and the mouse’s choices (black, 10-trial running average) track the block                 
structure. ​b​, Psychometric curves shift between blocks for the example mouse. ​c​, For each mouse that achieved proficiency on the                    
full task (Figure 1 - Supplement 1d) and for each stimulus, we computed a ‘bias shift’ by reading out the difference in choice                       
fraction between the 20:80 and 80:20 blocks (dashed lines). ​d​, Average shift in rightward choices between block types, as a                    
function of contrast for each laboratory (colors as in 2c, 3c; error bars show mean ± 68% CI). ​e​, Shift in rightward choices as a                         
function of contrast, separately for each lab. Each line represents an individual mouse (grey), with the example mouse in black.                    
Thick colored lines show the lab average. ​f, ​Visual threshold, ​g​, left lapses, ​h​, right lapses, and ​i​, bias separately for the 20:80 and                        
80:20 block types. Each lab is shown as mean +- s.e.m. ​j,​ Classifier results as in 3f, based on all data points in f-i. 
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To assess how mice used information about block structure, we compared their psychometric curves in the                
different block types (​Figure 4b,c​). Mice incorporated block priors into their choices, already from the first                
sessions in which they were exposed to this full task (​Figure 3 - Supplement 3​). To assess proficiency in                   
the full task we used a fixed set of criteria (​Figure 1 - Supplement 1d​). We considered performance in the                    
three sessions in which mice reached proficiency on the full task (​Figure 1 - Supplement 1d​). The curves                  
for the 20:80 and 80:20 blocks were shifted relative to the curve for the 50:50 block, with mice more likely to                     
choose right in the 20:80 blocks (where right stimuli appeared 80% of the time) and to choose left in the                    
80:20 blocks (where left stimuli appeared 80% of the time). As expected, block structure had the greatest                 
impact on choices when sensory evidence was absent (contrast = 0%, ​Figure 4c ​). In these conditions, it                 
makes sense for the mice to be guided by recent experience, and thus to choose differently depending on                  
the block prior.  

Changes in block type had a similar effect on mice in all laboratories (​Figure 4d,e​). The average shift in                   
rightward choices was invariably highest at 0% contrast, where rightward choices in the two blocks differed                
by an average of 28.5%. This value did not significantly differ across laboratories any more than it differed                  
within laboratories (one-way ANOVA F(6) = 1.345, p = 0.2455, ​Figure 4d​,​e ​). 

An analysis of the psychometric curves showed highly consistent effects of block type, with no significant                
differences across laboratories (​Figure 4f-i​). Changes in block type did not significantly affect the visual               
threshold, estimated from the slope of the psychometric curve (Wilcoxon Signed-Rank test, p = 0.85, n = 97                  
mice, ​Figure 4f ​). However, it did change the lapse rates, which were consistently higher on the left in the                   
20:80 blocks and on the right in the 80:20 blocks (Wilcoxon Signed-Rank test, lapse left; p < 10 ​-6​, lapse                   
right; p < 10 ​-7​, ​Figure 4g,h ​). Finally, as expected there was a highly consistent change in overall bias, with                   
curves shifting to the left in 20:80 trials and to the right in 80:20 trials (Wilcoxon Signed-Rank test, p < 10 ​-16​,                     
Figure 4i ​). Just as in the basic task (Figure 3), a classifier trained on these variables could not predict                   
above chance the origin laboratory of individual mice above chance (​Figure 4j​). Moreover, neither choice               
fractions nor bias shifts showed within-lab consistency that was larger than expected by chance (​Figure 3 -                 
Supplement 1b,c ​). This confirms that mice performed the full task similarly across laboratories.  

A probabilistic model reveals common strategies across mice and laboratories  
Lastly, we investigated the strategies used by the mice in the basic task and in the full task and asked                    
where these strategies were similar across mice and laboratories. Mice might incorporate non-sensory             
information into their decisions, even when such information is not predictive of reward ​(Busse et al., 2011;                 
Lak et al., 2020a)​. Therefore, even when reaching comparable performance levels, different mice might be               
weighing task variables differently when making a decision.  

To quantify how different mice form their decisions, we used a simple generalized linear model (​Figure 5a​).                 
The model is based on similar approaches used in both value-based ​(Lau and Glimcher, 2005) and                
sensory-based decision making ​(Busse et al., 2011; Pinto et al., 2018)​. In the model, the probability of                 
making a right choice is calculated from a logistic function of the linear weighted sum of several predictors:                  
the stimulus contrast, the outcome of the previous trial, and a bias term that represents the overall                 
preference of a mouse for a particular choice across sessions ​(Busse et al., 2011)​. In the case of the full                    
task we added a parameter representing the identity of the block, measuring the weight of the prior stimulus                  
statistics in the mouse decisions (​Figure 5a​).  
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We fitted the model to the choices of each individual mouse over three sessions by logistic regression. The                  
mean condition number for the basic model was 2.4 and 3.2 for the full model. The low conditions numbers                   
for both models do not suffer from multicollinearity and the coefficients are therefore interpretable. 

 

Figure 5. A probabilistic model reveals a common strategy across mice and laboratories. a, ​Schematic diagram of predictors                  
included in the GLM. Each stimulus contrast (except for 0%) was included as a separate predictor. Past choices were included                    
separately for rewarded and unrewarded trials. The dashed line represents the block prior predictor, only present in the full task. ​b,                     
Psychometric curves from the example mouse across 3 sessions in the basic task. Shadow represents 95% confidence interval of                   
the predicted choice fraction of the model. Points and error bars represent the mean and across-session confidence interval of the                    
data. ​c-d, Weights for GLM predictors across labs in the basic task, error bars represent the 95% confidence interval across mice.                     
e-g​, as b-d but for the full task.  

The model fit the mouse choices well and captured the relative importance of sensory and non-sensory                
information across mice and laboratories (​Figure 5b-g​). The model was able to accurately predict the               
behavior of individual mice, both in the basic task ​(Figure 5b ​) and in the full task (​Figure 5e​). As expected,                    
visual terms had large weights, which grew with contrast to reach values above 3 at 100% contrast. Weights                  
for non-sensory factors were much lower (​Figure 5c,f, note different scale). Weights for past choices were                
positive for both rewarded (basic 0.19, full 0.42) and unrewarded previous trials (basic 0.33, full 0.46),                
suggesting that mice were perseverant in their choice behavior (​Figure 5d,g; Figure 5 - Supplement 2a​).                
Indeed, previous choices more strongly influenced behavior in the full task, both after rewarded (t(125) =                
10.736, p < 10 ​-6​) and unrewarded trials (t(125) = 4.817, p < 10 ​-6​). Importantly, fitted weights and the model’s                   
predictive accuracy (unbiased: 81.03 + 5.1%, biased 82.1 + 5.8%) (​Figure 5 - Supplement 1​) ​were similar                 
across laboratories, suggesting an overall common strategy. 

The model coefficients demonstrated that mice were perseverant in their actions (​Figure 5d,g; Figure 5 -                
Supplement 2a ​). This behavior can arise from insensitivity to the outcome of previous trials and from slow                 
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drifts in the decision process across trials, arising from correlations in past choices independently of reward                
(Lak et al., 2020a; Mendonça et al., 2018)​. To disentangle these two factors, we corrected for slow                 
across-trial drifts in the decision process (Lak et al., 2020a). This correction revealed a win-stay/lose-switch               
strategy in both the basic and full task, that coexists with slow drifts in choice bias across trials (​Figure 5 -                     
Supplement 2b ​). Moreover, history-dependence was modulated by confidence in the previous trial. These             
effects were generally consistent across laboratories.  

Discussion 
These results reveal that a complex mouse behavior can be successfully reproduced across laboratories,              
and more generally suggest a path towards improving reproducibility in neuroscience. To study mouse              
behavior across laboratories we developed and implemented identical experimental equipment and a            
standard set of protocols. Not only did mice learn the task in all laboratories, but critically, after learning they                   
performed the task comparably across laboratories. Mice in different laboratories had similar psychophysical             
performance in a purely sensory version of the task and adopted similar choice strategies in the full task,                  
where they benefited from tracking the stimulus prior probability. Behavior showed variations across             
sessions and across mice, but these variations were no larger across laboratories than within laboratories. 

Success did not seem guaranteed at the outset, because neuroscience faces a crisis of reproducibility               
(Baker, 2016; Botvinik-Nezer et al., 2020; Button et al., 2013) particularly when it comes to measurements                
of mouse behavior ​(Chesler et al., 2002; Crabbe et al., 1999; Kafkafi et al., 2018; Sorge et al., 2014; Tuttle                    
et al., 2018)​. To solve this crisis, three solutions have been proposed: large studies, many teams, and                 
upfront registration (Ioannidis, 2005). Our approach incorporates all three of these solutions. First, we              
collected vast amounts of data: 5 million choices from 138 mice. Second, we involved many teams,                
obtaining data in 7 laboratories in 3 countries. Third, we standardized the experimental protocols and data                
analyses upfront, which is a key component of pre-registration.  

An element that may have contributed to success is the collaborative, open-science nature of our initiative                
(Wool and The International Brain Laboratory., 2020)​. Open-science collaborative approaches are           
increasingly taking hold in neuroscience ​(Beraldo et al., 2019; Charles et al., 2020; Forscher et al., 2020;                 
Koscielny et al., 2014; Poldrack and Gorgolewski, 2014; de Vries et al., 2020)​. Our work benefited from                 
collaborative development of the behavioral assay, and from frequent and regular meetings where data              
were reviewed across laboratories. These meetings were structured to identify problems at the origin,              
provide immediate feedback, and find solutions collectively. Moreover, our work benefited from constant             
efforts at standardization. We took great care in standardizing and documenting the behavioral apparatus              
and the training protocol (see Appendices), to facilitate implementation across our laboratories and to              
encourage wider adoption by other laboratories. The protocols, hardware designs and software code are              
open-source and modular, allowing adjustments to accommodate a variety of scientific questions. The data              
are accessible at ​data.internationalbrainlab.org ​, and include all >5 million choices made by the mice.  

Another element that might have contributed to success is our choice of behavioral task, which places                
substantial requirements on the mice while not being too complex. Previous failures to reproduce mouse               
behavior across laboratories typically arose in studies of unconstrained behavior such as responses to pain               
or stress ​(Chesler et al., 2002; Crabbe et al., 1999; Kafkafi et al., 2018; Sorge et al., 2014; Tuttle et al.,                     
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2018)​. To be able to study decision making, and in hopes of achieving reproducibility, we designed a task                  
that engages multiple brain processes from sensory perception and integration of evidence to combination              
of priors and evidence. It seems likely that reproducibility is easier to achieve if the task requirements are                  
substantial (so there is less opportunity to engage in other behaviors) but not so complex that they fail to                   
motivate and engage. Tasks that are too simple and unconstrained or too arbitrary and difficult may be                 
difficult to reproduce.  

There are of course multiple ways to improve on our results, e.g. by clarifying, and if desired resolving, the                   
differences in learning rate across mice, both within and across laboratories. The learning rate is a factor                 
that we had not attempted to control, and we cannot here ascertain the causes of its variability. We suspect                   
that it might arise partly from variations in the expertise and familiarity of different labs with visual                 
neuroscience and mouse behavior, which may impede standardization. If so, perhaps as experimenters             
gain further experience the differences in learning times will decrease. Indeed, an approach to standardizing               
learning rates might be to introduce full automation in behavioral training by reducing or even removing the                 
need for human intervention ​(Aoki et al., 2017; Poddar et al., 2013; Scott et al., 2015)​. Variability in learning                   
rates may be further reduced by individualized, dynamic training methods ​(Bak et al., 2016)​. If desired, such                 
methods could also be aimed at obtaining uniform numbers of trials and reaction times across laboratories. 

Another fruitful avenue of research would be to characterize the behavior beyond the turning of the wheel,                 
analyzing the dynamics of the movement of the mouse limbs. The only aspect of behavior that we analyzed                  
here is whether the wheel was turned to the left or to the right. But to turn the wheel, the mice move                      
substantial parts of their body, and they often do so in diverse ways (e.g. some mice turn the wheel with two                     
hands, others with one, and so on). By analyzing these movements with videography ​(Mathis et al., 2018)                 
one could classify these dynamics and perhaps identify behavioral strategies that provide more insight in               
the performance of the task and into the diversity of behavior that we observed across sessions and across                  
mice.  

Our work could also be extended through better modeling of mouse behavior, beyond our simple model                
based on stimuli, choice history, and bias. The model is only a starting point for exploring the full complexity                   
of decision computations. Indeed, we showed that ‘perseverance’ represented by the reward history             
weights can be confounded by slow fluctuations in decision process over trials ​(Lak et al., 2020a; Mendonça                 
et al., 2018) and such history-dependence is modulated by confidence in the previous trial ​(Lak et al.,                 
2020b, 2020a; Urai et al., 2017)​. In addition to these analyses, our data are also ideally suited to investigate                   
other phenomena a, such as the origin of lapses ​(Ashwood et al., 2019; Pisupati et al., 2019)​, how mice                   
track the changes between prior blocks ​(Norton et al., 2019)​, the dependence of psychophysical behavior               
on fluctuating engagement states ​(McGinley et al., 2015)​, and the dynamics of trial-by-trial learning within a                
session ​(Roy et al., 2020)​. While beyond the scope of this investigation, we hope that the availability of this                   
large, curated dataset will serve as a benchmark for testing these and other models of decision-making. 

To encourage and support community adoption of this task, we provide detailed methods and protocols.               
These methods and protocols provide a path to training mice in this task and reproducing their behavior                 
across laboratories, but of course we cannot claim that they constitute the optimal path. In designing our                 
methods, we made many choices that were based on intuition rather than rigorous experimentation. We               
don’t know what is crucial in these methods and what is not.  
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The reproducibility of this mouse behavior makes it a good candidate for studies of the brain mechanisms                 
underlying decision making. We hope that these resources catalyze the development of new adaptations              
and variations of our approach, and accelerate the use of mice in high quality, reproducible studies of neural                  
correlates of decision-making.  
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Methods 
All procedures and experiments were carried out in accordance with the local laws and following approval                
by the relevant institutions: the Animal Welfare Ethical Review Body of University College London; the               
Institutional Animal Care and Use Committees of Cold Spring Harbor Laboratory, Princeton University, and              
University of California at Berkeley; the ​University Animal Welfare Committee of New York University; and               
the Portuguese Veterinary General Board. 

Animals 
Animals (all female and male C57BL6/J mice aged 3-7 months obtained from Jackson Laboratory or               
Charles River) were co-housed whenever possible, with a minimum enrichment of nesting material and a               
mouse house. Mice were kept in a 12-h light-dark cycle, and fed with food that was 5-6% fat and 18-20%                    
protein. See ​Suppl. Table 1 ​for details on standardization. 

Surgery 
A detailed account of the surgical methods is in ​Appendix 1 ​. Briefly, mice were anesthetized with isoflurane                 
and head-fixed in a stereotaxic frame. The hair was then removed from their scalp, much of the scalp and                   
underlying periosteum was removed and bregma and lambda were marked. Then the head was positioned               
such that there was a 0 degree angle between bregma and lambda in all directions. The headbar was then                   
placed in one of three stereotactically defined locations and cemented in place. The exposed skull was then                 
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covered with cement and clear UV curing glue, ensuring that the remaining scalp was unable to retract from                  
the implant.  

Materials and Apparatus 
For detailed parts lists and installation instructions, see ​Appendix 3 ​. Briefly, all labs installed standardized               
behavioral rigs consisting of an LCD screen (LP097QX1, LG), a custom 3D-printed mouse holder and head                
bar fixation clamp to hold a mouse such that its forepaws rest on a steering wheel (86652 & 32019, LEGO)                    
(Burgess et al., 2017)​. Silicone tubing controlled by a pinch valve (225P011-21, NResearch) was used to                
deliver water rewards to the mouse. The general structure of the rig was constructed from Thorlabs parts                 
and was placed inside an acoustical cabinet (9U acoustic wall cabinet 600 X 600, Orion). LCD screen                 
refresh times were captured with a Bpod Frame2TTL (Sanworks). Ambient temperature, humidity and             
barometric air pressure were measured with the Bpod Ambient module (Sanworks), wheel position was              
monitored with a rotary encoder (05.2400.1122.1024, Kubler) connected to a Bpod Rotary Encoder Module              
(Sanworks). Video of the mouse was recorded with a USB camera (CM3-U3-13Y3M-CS, Point Grey). A               
speaker (HPD-40N16PET00-32, Peerless by Tymphany) was used to play task-related sounds, and an             
ultrasonic microphone (Ultramic UM200K, Dodotronic) was used to record ambient noise from the rig. All               
task-related data was coordinated by a Bpod State Machine (Sanworks). The task logic was programmed in                
Python and the visual stimulus presentation and video capture was handled by Bonsai ​(Lopes et al., 2015)                 
and the Bonsai package BonVision ​(Lopes et al., 2020)​ . 

Habituation, Training and Experimental Protocol 
For a detailed protocol on animal training, see ​Appendix 2 ​. Mice were water restricted or given access to                  
citric acid water on weekends ​(Urai et al., 2020)​. Mice were handled for at least 10 minutes and given water                    
in hand for at least two consecutive days prior to head fixation. On the second of these days, mice were                    
also allowed to freely explore the rig for 10 minutes. Subsequently, mice were gradually habituated to head                 
fixation over three consecutive days (15-20, 20-40, and 60 minutes, respectively), observing an association              
between the visual grating and the reward location. On each trial, with the steering wheel locked, mice                 
passively viewed a Gabor stimulus (100% contrast, 0.1 cycles/degree spatial frequency, random phase,             
vertical orientation) presented on a small screen (size: approx. 246 mm diagonal active display area). The                
screen was positioned 8 cm in front of the animal and centralized relative to the position of eyes to cover                    
~102 visual degree azimuth. The stimulus appeared for ~10 s randomly presented at -35° (left), +35°                
(right), or 0° (center) and the mouse received a reward in the latter case (3µl water with 10% sucrose).  

On the fourth day, the steering wheel was unlocked and coupled to the movement of the stimulus. For each                   
trial, the mouse must use the wheel to move the stimulus from its initial location to the center to receive a                     
reward. Initially, the stimulus moved 8°/mm of movement at the wheel surface. If the mouse completed at                 
least 200 correct response trials within a session, the gain of the wheel for all future sessions was halved,                   
remaining at 4°/mm. At the beginning of each trial, the mouse was required to not move the wheel for a                    
quiescence period of 200-500 ms (randomly drawn from an exponential distribution with a mean of 350 ms).                 
If the wheel moved during this period, the timer was reset. After the quiescence period, the stimulus                 
appeared on either the left (-35°) or right (+35°) with a contrast randomly selected from a predefined set                  
(initially, 50% and 100%). Simultaneously, an onset tone (5 kHz sine wave, 10 ms ramp) was played for 100                   
ms. As soon as the stimulus appeared, the mouse had 60 s to move the stimulus. If it correctly moved the                     
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stimulus 35° to the center of the screen, it received a 3 μL reward; if it incorrectly moved the stimulus 35°                     
away from the center (20° visible and the rest off-screen), it received an error timeout. If the mouse                  
responded incorrectly or failed to reach either threshold within the 60-s window, a noise burst was played for                  
500ms and the inter-trial interval was set to 2 s. If the response was incorrect and the contrast was 'easy'                    
(≥50%), a ‘repeat’ trial followed, in which the previous stimulus contrast and location was presented with a                 
high probability (see ​Appendix 2​).  

Once an animal was proficient in the basic task, it proceeded to the full task. Here, the trial structure was                    
identical, except that stimuli were more likely to reappear on the same side for variable blocks of trials, and                   
counterbiasing ‘repeat’ trials were not used. Each session began with 90 trials in which stimuli were equally                 
likely to appear on the left or right (10 repetitions at each contrast), after which the probability of the stimulus                    
appearing on the left alternated between 0.8 and 0.2 for a given block. The number of trials in each block                    
was drawn from a truncated exponential (range = 20-100, mean 50, τ = 60) 

Classification of laboratory membership 
Three different classifiers were used to try to predict in which laboratory a mouse was trained based on                  
behavioral metrics: Naive Bayes, Random Forest, and Logistic Regression. We used the scikit-learn             
implementation available in Python with default configuration settings for the three classifiers. Some labs              
trained more mice than others resulting in an imbalanced dataset. This imbalance was corrected by taking a                 
random subsample of 8 mice from each laboratory 2,000 times. The size of the subsample was chosen                 
because 8 mice was the lowest number of mice over all different datasets for which classification was                 
performed. For each random subsample, lab membership was classified using leave-one-out           
cross-validation. Furthermore, a null-distribution was generated by shuffling the lab labels for each             
subsample and classifying the shuffled data. The classification accuracy was calculated as the F1 score               
(equation 1) which is a standard way of measuring a classifier’s accuracy. An F1 score of 0 indicates                  
complete misclassification and a score of 1 indicates perfect classification. 

1 score F = 2 *
precision  recall*
precision + recall Equation 1 

Probabilistic choice model 
To quantify and describe the different factors affecting choices across labs, we adapted a probabilistic               
choice model ​(Busse et al., 2011) used in a similar task. The model is a binomial logistic regression model,                   
where the observer estimates the probability of choosing right ( ) or left from sensory and         p    1 ) ( − p    
non-sensory information. In the model, probabilities are obtained from the logistic transformation of the              
decision variable (Equation 2), which in itself is the result of a weighted linear function of different task  z                  
predictors (Equation 3 and Equation 4). 

p = 1
1 + e−z   Equation 2 

For the ​basic task​,  in each trial , the decision variable  is calculated by:i z  

(i) W I (i) .. I (i) W r(i ) W u(i ) Wz =  6.25  6.25 + . + W c c +  r − 1 +  u − 1 +  0   

16 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.01.17.909838doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?tPlgXN
https://doi.org/10.1101/2020.01.17.909838
http://creativecommons.org/licenses/by/4.0/


 

Equation 3 

where is is the coefficient associated with the contrast ), and is an W c         6.25, 12.5, 25, 50, 100}c ∈ {       (i)Ic 
   

indicator function indicating +1 if the contrast appeared on the right in trial , -1 if it appeared on the left       c        i         
and 0 if that contrast was not presented. The coefficients ( and ) weigh the effect of previous          W r   W u       
choices, depending on their outcome. is defined as +1 when the previous trial was on the right and     (i )r − 1              
rewarded, -1 when on the left and rewarded, and 0 when unrewarded. Conversely, is defined as +1             (i )u − 1      
when the previous trial was on the right and unrewarded, -1 when on the left and unrewarded and 0 when                    
rewarded.  is a constant representing the overall bias of the mouse.W 0  

When modelling the ​full task we also included the term (Equation 4), which captures the block          b(i)W b        
identity for trial . is defined as +1 if trial is part of an 20:80 block, -1 if part of a 80:20 block and 0 (i)b    i  (i)b        i                
if part of a 50/50 block: 

+ (i) W I (i) .. I (i) W r(i ) W u(i ) Wz =  6.25  6.25 + . + W c c +  r − 1 +  u − 1 +  0 b(i)W b   
Equation 4 

For each animal, the design matrix was built using patsy ​(Smith et al., 2018)​. The model was then fitted by                    
regularized maximum likelihood estimation, using the ​Logit.fit_regularized function implemented in          
statsmodels ​(Seabold and Perktold, 2010)​. For the example animal (Figure 5b,e), 10.000 samples were              
drawn from a multivariate Gaussian (obtained from the inverse of the model’s Hessian), and for each                
sample the model ‘s choice fraction for each contrast level was predicted. Confidence intervals were then                
defined as the 0.025 and 0.975 quantiles across samples. 

Data and code availability 
All data presented in this paper is publicly available. It can be viewed and accessed in two ways: via                   
DataJoint and web browser tools at ​data.internationalbrainlab.org ​.  

All data were analyzed and visualized in Python, using numpy ​(Harris et al., 2020)​, pandas ​(Reback et al.,                  
2020) and seaborn ​(Waskom et al., 2017)​. Code to produce all the figures is available at                
github.com/int-brain-lab/paper-behavior​, and a Jupyter notebook for re-creating Figure 2 can be found at             
jupyterhub.internationalbrainlab.org/​ (under ‘resources’). 
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Appendices 
Appendices are available online: 

Appendix 1: IBL protocol for headbar implant surgery in mice 

Appendix 2:  IBL protocol for mice training 

Appendix 3: IBL protocol for setting up the behavioral training rig 

CAD models and technical drawings for the manufactured parts can be found ​online ​. The whole CAD 
assembly model of the rig (including non-manufactured parts) can also be found ​online ​. A 3D rendered 
video of the behavioral training rig CAD model can be found ​online ​. 

Author contributions 

Task force description 
The production of all IBL Platform Papers is led by a Task Force, which defines the scope and composition                   
of the paper, assigns and/or performs the required work for the paper, and ensures that the paper is                  
completed in a timely fashion. The Task Force members for this platform paper are Gaelle A. Chapuis,                 
Guido T. Meijer, Alejandro Pan Vazquez, Anne E. Urai, Miles Wells, and Matteo Carandini. 

Contribution diagram 
The following diagram illustrates the contributions of each author, based on the CRediT taxonomy ​(Brand et                
al., 2015)​. For each type of contribution there are three levels: support, equal, and lead, indicated by color in                   
the diagram. The full written statement includes explanatory comments for each contribution. 
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Supplement 1. Author contributions, listed using CRediT taxonomy categories. Purple squares indicate a contribution, with               
levels ‘support’ (light), ‘equal’ (medium) and ‘lead’ (dark). See below for the full description of each author’s contribution. 

Contribution statement 
Valeria Aguillon Rodriguez: METHODOLOGY: built, designed and tested rig assembly (equal); METHODOLOGY: developed             
protocols for surgery, husbandry and animal training (equal); INVESTIGATION: built and maintained rigs, performed surgeries,               
collected behavioral data (equal) 

Dora E. Angelaki: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
FUNDING ACQUISITION: acquired funding (support) 

Hannah M. Bayer: WRITING - ORIGINAL DRAFT: wrote and curated the appendix protocols (support); WRITING - REVIEW AND                  
EDITING: edited the paper (lead); SUPERVISION: managed and coordinated team (support) 

Niccolò Bonacchi: METHODOLOGY: built, designed and tested rig assembly (lead); METHODOLOGY: designed and delivered rig               
components (support); METHODOLOGY: piloted candidate behavioral tasks (equal); METHODOLOGY: developed final behavioral            
task (equal); METHODOLOGY: developed protocols for surgery, husbandry and animal training (support); METHODOLOGY:             
standardized licenses and experimental protocols across institutions (equal); SOFTWARE: developed data acquisition software and              
infrastructure (lead); VALIDATION: maintained and validated analysis code (support); FORMAL ANALYSIS: analyzed data             
(support); INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support); DATA CURATION:              
curated data and metadata (equal); WRITING - ORIGINAL DRAFT: wrote the first version of the paper (support); WRITING -                   
ORIGINAL DRAFT: wrote and curated the appendix protocols (support); WRITING - REVIEW AND EDITING: edited the paper                 
(support); SUPERVISION: managed and coordinated team (support); PROJECT ADMINISTRATION: managed and coordinated            
research outputs (support); FUNDING ACQUISITION: acquired funding (support) 

Matteo Carandini: CONCEPTUALIZATION: defined composition and scope of the paper (lead); RESOURCES: hosted the research               
(equal); WRITING - ORIGINAL DRAFT: wrote the first version of the paper (equal); WRITING - ORIGINAL DRAFT: wrote the                   
second version of the paper (lead); WRITING - REVIEW AND EDITING: edited the paper (equal); SUPERVISION: supervised local                  
laboratory research (equal); SUPERVISION: managed and coordinated team (lead); PROJECT ADMINISTRATION: managed and             
coordinated research outputs (lead); FUNDING ACQUISITION: acquired funding (equal) 
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Fanny Cazettes: METHODOLOGY: piloted candidate behavioral tasks (lead); METHODOLOGY: developed final behavioral task             
(support); METHODOLOGY: developed protocols for surgery, husbandry and animal training (support); INVESTIGATION: built and              
maintained rigs, performed surgeries, collected behavioral data (equal); WRITING - ORIGINAL DRAFT: wrote the first version of the                  
paper (support); SUPERVISION: managed and coordinated team (support) 

Gaelle A. Chapuis: CONCEPTUALIZATION: defined composition and scope of the paper (equal); METHODOLOGY: developed              
protocols for surgery, husbandry and animal training (lead); METHODOLOGY: designed and delivered rig components (support);               
METHODOLOGY: standardized licenses and experimental protocols across institutions (lead); VALIDATION: maintained and            
validated analysis code (support); FORMAL ANALYSIS: analyzed data (support); DATA CURATION: curated data and metadata               
(support); WRITING - ORIGINAL DRAFT: wrote the second version of the paper (equal); WRITING - ORIGINAL DRAFT: wrote and                   
curated the appendix protocols (lead); WRITING - REVIEW AND EDITING: edited the paper (support); VISUALIZATION: designed                
and created figures (support); SUPERVISION: managed and coordinated team (lead); PROJECT ADMINISTRATION: managed             
and coordinated research outputs (lead); FUNDING ACQUISITION: acquired funding (support) 

Anne K. Churchand: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
FUNDING ACQUISITION: acquired funding (lead) 

Yang Dan: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal); FUNDING              
ACQUISITION: acquired funding (support) 

Eric E. DeWitt: CONCEPTUALIZATION: defined composition and scope of the paper (support); METHODOLOGY: developed final               
behavioral task (equal); METHODOLOGY: piloted candidate behavioral tasks (equal); METHODOLOGY: developed protocols for             
surgery, husbandry and animal training (support); WRITING - REVIEW AND EDITING: edited the paper (support); SUPERVISION:                
managed and coordinated team (support); FUNDING ACQUISITION: acquired funding (support) 

Mayo Faulkner: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (equal); WRITING -               
ORIGINAL DRAFT: wrote and curated the appendix protocols (equal) 

Hamish Forrest: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support) 

Laura M. Haetzel: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (equal) 

Michael Hausser: RESOURCES: hosted the research (equal); WRITING - REVIEW AND EDITING: edited the paper (support);                
SUPERVISION: supervised local laboratory research (equal); FUNDING ACQUISITION: acquired funding (lead) 

Sonja B. Hofer: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
FUNDING ACQUISITION: acquired funding (support) 

Fei Hu: METHODOLOGY: standardized licenses and experimental protocols across institutions (equal); INVESTIGATION: built and              
maintained rigs, performed surgeries, collected behavioral data (equal); FUNDING ACQUISITION: acquired funding (support) 

Anup Khanal: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support) 

Christopher S. Krasniak: METHODOLOGY: piloted candidate behavioral tasks (equal); METHODOLOGY: developed protocols for             
surgery, husbandry and animal training (equal); INVESTIGATION: built and maintained rigs, performed surgeries, collected              
behavioral data (equal); WRITING - ORIGINAL DRAFT: wrote the first version of the paper (equal); WRITING - ORIGINAL DRAFT:                   
wrote and curated the appendix protocols (support); WRITING - REVIEW AND EDITING: edited the paper (support) 

Inês C. Laranjeira: METHODOLOGY: piloted candidate behavioral tasks (equal); METHODOLOGY: developed protocols for             
surgery, husbandry and animal training (equal); INVESTIGATION: built and maintained rigs, performed surgeries, collected              
behavioral data (equal); WRITING - ORIGINAL DRAFT: wrote and curated the appendix protocols (support) 

Zachary F. Mainen: FORMAL ANALYSIS: analyzed data (support); RESOURCES: hosted the research (equal); WRITING -               
REVIEW AND EDITING: edited the paper (equal); SUPERVISION: supervised local laboratory research (equal); FUNDING              
ACQUISITION: acquired funding (lead) 
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Guido T. Meijer: CONCEPTUALIZATION: defined composition and scope of the paper (equal); METHODOLOGY: developed final               
behavioral task (equal); METHODOLOGY: built, designed and tested rig assembly (lead); METHODOLOGY: standardized licenses              
and experimental protocols across institutions (equal); VALIDATION: maintained and validated analysis code (equal); FORMAL              
ANALYSIS: analyzed data (lead); INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data              
(equal); WRITING - ORIGINAL DRAFT: wrote the second version of the paper (equal); WRITING - ORIGINAL DRAFT: wrote and                   
curated the appendix protocols (equal); VISUALIZATION: designed and created figures (lead) 

Nathaniel J. Miska: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (equal); WRITING -                
REVIEW AND EDITING: edited the paper (support) 

Thomas D. Mrsic-Flogel: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
FUNDING ACQUISITION: acquired funding (support) 

Masayoshi Murakami: METHODOLOGY: built, designed and tested rig assembly (support); METHODOLOGY: piloted candidate             
behavioral tasks (support) 

Jean Paul Noel: METHODOLOGY: standardized licenses and experimental protocols across institutions (equal); FORMAL             
ANALYSIS: analyzed data (support); INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data              
(equal); WRITING - ORIGINAL DRAFT: wrote the first version of the paper (lead); WRITING - REVIEW AND EDITING: edited the                    
paper (support) 

Alejandro Pan-Vazquez: CONCEPTUALIZATION: defined composition and scope of the paper (equal); METHODOLOGY:            
standardized licenses and experimental protocols across institutions (equal); METHODOLOGY: developed protocols for surgery,             
husbandry and animal training (support); VALIDATION: maintained and validated analysis code (support); FORMAL ANALYSIS:              
analyzed data (lead); INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (equal); WRITING               
- ORIGINAL DRAFT: wrote the second version of the paper (equal); WRITING - REVIEW AND EDITING: edited the paper (equal);                    
VISUALIZATION: designed and created figures (equal) 

Cyrille Rossant: DATA CURATION: curated data and metadata (support) 

Joshua I. Sanders: METHODOLOGY: designed and delivered rig components (lead); METHODOLOGY: built, designed and tested               
rig assembly (equal) 

Karolina Z. Socha: METHODOLOGY: developed protocols for surgery, husbandry and animal training (equal); METHODOLOGY:              
built, designed and tested rig assembly (support); INVESTIGATION: built and maintained rigs, performed surgeries, collected               
behavioral data (equal); WRITING - REVIEW AND EDITING: edited the paper (support) 

Rebecca Terry: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support) 

Anne E. Urai: CONCEPTUALIZATION: defined composition and scope of the paper (equal); METHODOLOGY: built, designed and                
tested rig assembly (support); METHODOLOGY: piloted candidate behavioral tasks (equal); METHODOLOGY: developed final             
behavioral task (equal); METHODOLOGY: developed protocols for surgery, husbandry and animal training (equal); VALIDATION:              
maintained and validated analysis code (equal); FORMAL ANALYSIS: analyzed data (lead); INVESTIGATION: built and maintained               
rigs, performed surgeries, collected behavioral data (equal); DATA CURATION: curated data and metadata (support); WRITING -                
ORIGINAL DRAFT: wrote the second version of the paper (equal); WRITING - ORIGINAL DRAFT: wrote and curated the appendix                   
protocols (support); VISUALIZATION: designed and created figures (lead); VISUALIZATION: created data visualizations (lead);             
SUPERVISION: managed and coordinated team (support); PROJECT ADMINISTRATION: managed and coordinated research            
outputs (support) 

Hernando M. Vergara: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support);              
WRITING - ORIGINAL DRAFT: wrote and curated the appendix protocols (support) 

Miles J. Wells: CONCEPTUALIZATION: defined composition and scope of the paper (equal); METHODOLOGY: built, designed and                
tested rig assembly (support); METHODOLOGY: piloted candidate behavioral tasks (lead); METHODOLOGY: developed final             
behavioral task (equal); VALIDATION: maintained and validated analysis code (equal); FORMAL ANALYSIS: analyzed data (equal);               
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DATA CURATION: curated data and metadata (lead); WRITING - ORIGINAL DRAFT: wrote the second version of the paper                  
(equal); VISUALIZATION: designed and created figures (support); VISUALIZATION: created data visualizations (support) 

Christian J. Wilson: INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data (support) 

Ilana B. Witten: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
FUNDING ACQUISITION: acquired funding (support) 

Lauren E. Wool: METHODOLOGY: built, designed and tested rig assembly (lead); METHODOLOGY: developed final behavioral               
task (equal); METHODOLOGY: developed protocols for surgery, husbandry and animal training (support); WRITING - ORIGINAL               
DRAFT: wrote the first version of the paper (lead); WRITING - REVIEW AND EDITING: edited the paper (equal); FUNDING                   
ACQUISITION: acquired funding (support) 

Anthony M. Zador: RESOURCES: hosted the research (equal); SUPERVISION: supervised local laboratory research (equal);              
SUPERVISION: managed and coordinated team (equal); FUNDING ACQUISITION: acquired funding (equal) 

 

 

 

 

Supplement 
Figure 1 - Supplement 1: Standardization. 

a. 

Category Variable Standardized Standard Recorded 

Animal Weight  Within a range 18 - 30g at headbar implant Per session 

 Age Within a range 10-12 weeks at headbar implant Per session 

 Strain Exactly C57BL/6J Once 

 Sex No Both Once 

 Provider Two options Charles River (EU) Jax (US) Once 

Training Handling One protocol Appendix 2 No 

 Hardware Exactly Appendix 3 No 

 Software Exactly Appendix 3 Per session 

 Fecal count N/A N/A Per session 

 Time of day No As constant as possible Per session 
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Housing Enrichment Minimum requirement At least nesting and house Once 

 Food Within a range Protein: 18 - 20%, Fat: 5 - 6.2% Once 

 Light cycle Two options 12 Hr inverted or non-inverted Once 

 Weekend water  Two options Citric acid water or measured water Per session 

 Co housing status No Co-housing preferred, separate problem    
mice 

Per change 

Surgery Aseptic protocols One protocol Appendix 1 No 

 Tools/Consumable
s 

Required parts Appendix 1 No 
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b. 

Adaptive parameter Initial value 

Contrast set [100, 50] 

Reward volume 3 ​ μL 

Wheel gain 8 deg/mm 

c. 

Criterion Outcome 

200 trials completed in a session Wheel gain decreased 4 deg/mm 

> 80% correct on each contrast Contrast set = [100, 50, 25] 

> 80% correct on each contrast after above Contrast set = [100, 50, 25, 12.5] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25 ] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25, 0 ] 

200 trials after above Contrast set = [100, 25, 12.5, 6.25, 0 ] 

200 trials complete in a session &  
reward volume > 1.5 μL 

Next session decrease reward by 0.1 μL  

Animal weight/25 > reward volume/1000 &      
reward volume < 3 μL 

Next session increase reward by 0.1 μL 

 

d.  

Proficiency level Outcome 

‘Basic task proficiency’ 
For each of the last 3 sessions:  
>400 trials completed, & 
>80% correct on 100% contrast &  
all contrasts introduced &  
 
For the last 3 sessions combined: 
psychometric absolute bias <16 &  
psychometric threshold <19 & 
psychometric lapse rates < 0.2 

Training in the ​basic task ​achieved: mouse       
is ready to proceed to training in the ​full         
task ​. In some mice, we continued training       
in the basic task to obtain even higher        
performance. 

‘Full task proficiency’ 
For each of the last 3 sessions:  
>400 trials completed, & 
>90% correct on 100% contrast &  
 
For the last 3 sessions combined: 
all 4 lapse rates (left & right, 20:80 & 80:20 blocks) < 0.1 & 
bias[80:20] - bias[20:80] > 5 & 
median RT on 0% contrast < 2s 

Training in the full task achieved: mouse is        
ready for neural recordings. 
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Figure 1 - Supplement 1. Standardization. (a) ​To facilitate reproducibility we standardized multiple aspects of the experiment.                 
Some variables were kept strictly the same across mice, while others were kept within a range or simply recorded (see                    
‘Standardized’ column). ​(b-c) ​The behavior training protocol was also standardized. ​(b) ​Several task parameters adaptively               
changed within or across sessions ​(b) contingent on various performance criteria being met, including number of trials completed,                  
amount of water received and proportion of correct responses. 

 

Figure 1 - Supplement 2: Task trial structure 

 

Figure 1 - Supplement 2. Task trial structure. ​Trials began with an enforced quiescent period during which the wheel must be                     
kept still for at least 200ms, after which was the visual stimulus onset and an audio tone to indicate the start of the closed-loop                        
period. The feedback period began when a response was given or 60s had elapsed since stimulus onset. On correct trials a reward                      
was given and the stimulus remained in the center of the screen for 1s. On incorrect trials there was a noise burst and a 2s timeout                          
before the next trial. 

Figure 1 - Supplement 3: Within-session disengagement criteria 

a. 

Criterion Explanation 

Session length > 90 min Session too long 

< 400 trials completed & > 45 min elapsed Not enough trials 

> 400 trials & 20-trial rolling median RT > 5x          
session median RT 

Slow-down 

b. 
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Figure 1 - Supplement 4. Distribution of within-session disengagement criteria. (b) ​Proportion of sessions that ended in each                  
of the 3 criteria for all mice that learned the task. (​a​) The three criteria were, 1. Fewer than 400 trials in 45 minutes (green); 2. over                           
400 trials performed and median reaction time over the last 20 trials was over 5x the median for the whole session (blue); 3. Over                        
400 trials performed and session length reached 90 minutes (orange). 

 

 

Figure 2 - Supplement 1. Performance variability within and across laboratories goes down over training time. a-b,                 
Variability in performance (s.d. of % correct) in easy trials (100% and 50% contrast) ( ​a​) within (colors as in Figure 2, 3 and 4), and                         
( ​b​) across laboratories during the first 40 days of training. 
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Figure 3 - Supplement 1. Within-lab consistency of mouse choices. ​We computed ​within-lab choice consistency​, to measure                 
the similarity in behavior across mice within an individual lab. ( ​a​) Within-lab choice consistency for the basic task (same data as in                      
Figure 3). For each lab and each signed contrast we computed the variance across mice in the fraction of rightward choices. We                      
then computed the inverse (consistency) and averaged the result across the signed contrasts (​dots​). We then averaged this                  
measure across labs to quantify the overall within-lab consistency of choices ( ​horizontal line​). A null distribution was generated by                   
randomly shuffling lab assignments between animals and computing the average within-lab choice variability 10,000 times ( ​violin                
plot​). If choice behavior were more consistent within labs than across labs, this shuffled measure would be lower than in the real                      
data. Instead, for the basic task it was not lower than expected by chance (p = 0.73). (​b​) For the full task, we computed the choice                          
fractions separately per signed contrast as well as prior block, before taking the average consistency (1/variance) across mice.                  
Within-lab choice consistency on the full task (same data as in Figure 4) was not higher than expected by chance, p = 0.25. Notice                        
that choice consistency is higher on the full task than the basic task; this likely reflects both increased training on the task, and a                        
stronger constraint on choice behavior through the full task’s block structure. ( ​c​) As in a, b, but measuring the within-lab consistency                     
of ‘bias shift’ between the 20:80 and 80:20 blocks (as in Figure 4d,e). Within-lab consistency in bias shift was not higher than                      
expected by chance (p = 0.31).  

 

Figure 3 - Supplement 2. Behavioral metrics that were not explicitly trained, varied over labs. ​a-b​, For the three sessions at                      
which a mouse achieved basic task proficiency, box plots showing the distribution of ( ​a​) trial duration from go cue to correct or                      
incorrect outcome, ( ​b​) the average number of trials in each of the three sessions, (​c​) number of trials per minute. 
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Figure 3 - Supplement 3. Behavior was indistinguishable over labs for the three sessions after first performing the full 
task. ​For the first 3 sessions of performing the full task (triggered by achieving proficiency in the basic task, defined by a specific set 
of criteria, Figure 1 - Supplement 1d), ​a​ Bias for each block prior did not vary significantly over labs (Kruskal-Wallis test, 20:80 
blocks; p = 0.96, 50:50 block; p = 0.96, 80:20 block; p = 0.89) ​b​ The contrast thresholds also did not vary systematically over labs 
(Kruskal-Wallis test, 20:80 block; p = 0.078, 50:50 block; p = 0.12, 80:20 block; p = 0.17), ​c ​Performance on 100% contrast trials 
neither (Kruskal-Wallis test, p = 0.15),​ d ​The between-lab Naive Bayes classifier trained on the data in ​a-c​ did not perform above 
chance level when trying to predict the lab membership of mice. ​e​ Normalized confusion matrix for the classifier in ​d​. 
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Figure 3 - Supplement 4. Classification of lab membership by three different classifiers could not predict lab membership                  
from behavior. a ​, Classification performance of a Naive Bayes, Random Forest and Logistic Regression classifier while predicting                 
lab membership based on behavioral metrics from Figure 3c-e like in Figure 3f. From each lab, 8 mice were randomly subsampled                     
2,000 times and for each iteration lab membership was classified using leave-one-out cross-validation. The positive control included                 
the time zone in which a mouse was trained in the dataset and in the shuffle condition the lab labels were shuffled. ​b​, Normalized                        
confusion matrices for the classifiers in ​a ​which indicates the proportion of occurrences that a mouse was classified to be in the                      
predicted lab (x-axis) while it was from the ‘actual lab’ (y-axis). ​c​, Normalized confusion matrices as in ​b, for the positive control.                      
Labs that are located in the same time zone from clear clusters, Lab 7 is always correctly predicted because it’s the only lab that                        
doesn’t have any other labs in the same time zone. 
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Figure 5 - Supplement 1. GLM accuracy across labs​. Cross validated GLM accuracy (threshold: 50%) across mice and                  
laborations in the ​(a) ​basic and ​(b)​ full task. Each point represents the average accuracy for each mouse. 
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Figure 5 - Supplement 2. History-dependent choice updating. ( ​a​) Representing each animal’s ‘history strategy’, defined as the                 
bias shift in their psychometric function as a function of the choice made on the previous trial, separately for when this trial was                       
rewarded or unrewarded. Each animal is shown as a dot, with lab-averages shown larger colored dots. Contours indicate a                   
two-dimensional kernel density estimate across all animals. The red arrow shows the group average in the basic task at its origin,                     
and in the full task at its end (replicated between the left and right panel). ( ​b​) as a, but with the strategy space corrected for slow                          
fluctuations in decision bound ​(Lak et al., 2020a)​. When taking these slow state-changes into account, the majority of animals use a                     
win-stay lose-switch strategy. ( ​c​) History-dependent choice updating, after removing the effect of slow fluctuations in decision                
bound, as a function of the previous trial’s reward and visual contrast. After rewarded trials, choice updating is largest when the                     
visual stimulus was highly uncertain (i.e. had low contrast) but strongly diminished after more certain, rewarded trials. This is in line                     
with predictions from Bayesian models, where an agent continually updates its beliefs about the upcoming stimuli with sensory                  
evidence ​(Lak et al., 2020a; Mendonça et al., 2018))​. 
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