1,970 research outputs found

    Argument as an Act of Friendship

    Get PDF
    Those who are said to argue are typically seen as annoying, domineering types who treat conversation as a duel in which the goal is in the words of Gerry Spence\u27s recent bestseller, to win every time. The most immediate manifestation of this resistance to argument as both inescapable and healthful comes from our students; even when they learn to appreciate and evaluate tropes at an advanced level, they still often wonder aloud, Should I engage openly in argument? This paper aspires to paste a happy face on the practice of argument as a partial antidote to this resistance

    The randomly driven Ising ferromagnet, Part I: General formalism and mean field theory

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. After introducing a general formalism for describing such systems, we consider here the mean-field theory. A novel type of first order phase transition related to spontaneous symmetry breaking and dynamic freezing is found. The non-equilibrium stationary state has a complex structure, which changes as a function of parameters from a singular-continuous distribution with Euclidean or fractal support to an absolutely continuous one.Comment: 12 pages REVTeX/LaTeX format, 12 eps/ps figures. Submitted to Journal of Physics

    Temporally disordered Ising models

    Full text link
    We present a study of the influence of different types of disorder on systems in the Ising universality class by employing both a dynamical field theory approach and extensive Monte Carlo simulations. We reproduce some well known results for the case of quenched disorder (random temperature and random field), and analyze the effect of four different types of time-dependent disorder scarcely studied so far in the literature. Some of them are of obvious experimental and theoretical relevance (as for example, globally fluctuating temperatures or random fields). All the predictions coming from our field theoretical analysis are fully confirmed by extensive simulations in two and three dimensions, and novel qualitatively different, non-Ising transitions are reported. Possible experimental setups designed to explore the described phenomenologies are also briefly discussed.Comment: Submitted to Phys. Rev. E. Rapid Comm. 4 page

    Stationary Properties of a Randomly Driven Ising Ferromagnet

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. Analytic results for the stationary state are presented in mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the mean field theory may survive the presence of fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to "mailto:[email protected]", submitted to PR

    Liquid 4He near the superfluid transition in the presence of a heat current and gravity

    Full text link
    The effects of a heat current and gravity in liquid 4He near the superfluid transition are investigated for temperatures above and below T_lambda. We present a renormalization-group calculation based on model F for the Green's function in a self-consistent approximation which in quantum many-particle theory is known as the Hartree approximation. The approach can handle a zero average order parameter above and below T_lambda and includes effects of vortices. We calculate the thermal conductivity and the specific heat for all temperatures T and heat currents Q in the critical regime. Furthermore, we calculate the temperature profile. Below T_lambda we find a second correlation length which describes the dephasing of the order parameter field due to vortices. We find dissipation and mutual friction of the superfluid-normal fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare our theoretical results with recent experiments.Comment: 26 pages, 9 figure

    Spatial patterns and scale freedom in a Prisoner's Dilemma cellular automata with Pavlovian strategies

    Full text link
    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple "win-stay, loose-shift" strategy is studied. Individuals with binary behavior, such as they can either cooperate (C) or defect (D), play repeatedly with their neighbors (Von Neumann's and Moore's neighborhoods). Their utilities in each round of the game are given by a rescaled payoff matrix described by a single parameter Tau, which measures the ratio of 'temptation to defect' to 'reward for cooperation'. Depending on the region of the parameter space Tau, the system self-organizes - after a transient - into dynamical equilibrium states characterized by different definite fractions of C agents (2 states for the Von Neumann neighborhood and 4 for Moore neighborhood). For some ranges of Tau the cluster size distributions, the power spectrums P(f) and the perimeter-area curves follow power-law scalings. Percolation below threshold is also found for D agent clusters. We also analyze the asynchronous dynamics version of this model and compare results.Comment: Accepted for publication in JSTA

    Orbifold projection in supersymmetric QCD at N_f\leq N_c

    Get PDF
    Supersymmetric orbifold projection of N=1 SQCD with relatively small number of flavors (not larger than the number of colors) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then perfoms orbifolding. It is shown that at finite N_c the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N_c limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy
    • …
    corecore