We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics
under the influence of a fast switching, random external field. After
introducing a general formalism for describing such systems, we consider here
the mean-field theory. A novel type of first order phase transition related to
spontaneous symmetry breaking and dynamic freezing is found. The
non-equilibrium stationary state has a complex structure, which changes as a
function of parameters from a singular-continuous distribution with Euclidean
or fractal support to an absolutely continuous one.Comment: 12 pages REVTeX/LaTeX format, 12 eps/ps figures. Submitted to Journal
of Physics