Abstract

We present a study of the influence of different types of disorder on systems in the Ising universality class by employing both a dynamical field theory approach and extensive Monte Carlo simulations. We reproduce some well known results for the case of quenched disorder (random temperature and random field), and analyze the effect of four different types of time-dependent disorder scarcely studied so far in the literature. Some of them are of obvious experimental and theoretical relevance (as for example, globally fluctuating temperatures or random fields). All the predictions coming from our field theoretical analysis are fully confirmed by extensive simulations in two and three dimensions, and novel qualitatively different, non-Ising transitions are reported. Possible experimental setups designed to explore the described phenomenologies are also briefly discussed.Comment: Submitted to Phys. Rev. E. Rapid Comm. 4 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019