870 research outputs found

    Orbit, clock and attitude analysis of QZS-1R

    Get PDF
    More than ten years after the launch of the first satellite of the Japanese Quasi-Zenith Satellite System (QZSS), a replenishment satellite for this spacecraft was launched into inclined geo-synchronous orbit (IGSO) in October 2021. Triple-frequency signal transmission of QZS-1R started on November 14, 2021. In the same month, Cabinet Office, Government of Japan published satellite metadata of QZS-1R including mass, center of mass coordinates, laser retro-reflector offsets, satellite antenna phase center offsets and variations, transmit power, attitude law, as well as spacecraft dimensions and optical properties. Precise orbit and clock parameters of QZS-1R are estimated with the NAPEOS software. The performance of a box-wing model derived from the satellite metadata is evaluated by day boundary discontinuities, orbit overlaps as well as Satellite Laser Ranging residuals. The analysis of the QZS-1R clock parameters estimated together with the orbits is complemented by a one-way carrier phase clock analysis of selected GNSS receivers connected to highly stable clocks in order to study also the short-term clock behavior. Like previous QZSS IGSO satellites, QZS-1R transmits the L1 Sub-meter Level Augmentation Service (SLAS) via a dedicated antenna separated about 1.2 m from the main navigation antenna. Therefore, simultaneous observations of, e.g., the L1C/A and the L1 SLAS signals allow to determine the QZS-1R attitude. Attitude estimates from a regional network of eight stations are presented and compared to the nominal attitude of the spacecraft

    Characterization and Performance Assessment of BeiDou-2 and BeiDou-3 Satellite Group Delays

    Get PDF
    Based on one year of data, a comprehensive assessment of broadcast group delays and differential code biases (DCBs) from network solutions is presented for all open BeiDou signals. Daily DCB estimates exhibit a precision of 0.1 ns, which also places a limit on long-term variations of the satellite group delays. On the other hand, the estimated DCBs show a notable dependence on the employed receivers, which causes inconsistencies at the few-nanosecond level between BeiDou-2 and BeiDou-3 satellites. Systematic satellite-specific offsets can likewise be identified in broadcast group delay values and clock offsets. These constitute the dominant contribution of the signal-in-space range error (SISRE) budget and are a limiting factor for single point positioning and timing. Use of the modernized B1C/B2a signals is therefore recommended instead of B1I/B3I. This offers a SISRE reduction from about 0.6 m to 0.45 m and also improves the consistency of precise clock and bias products derived from heterogeneous receiver networks

    UTC and GNSS system time access using PPP with broadcast ephemerides

    Get PDF
    The application of precise point positioning with broadcast ephemerides (PPP-BCE) is discussed as an alternative to the established all-in-view technique for multi-GNSS time transfer. It combines the use of broadcast ephemerides with low-noise carrier-phase observations for accessing GNSS system time scales and Coordinated Universal Time (UTC) with improved precision, and can be employed on stationary as well as mobile receivers in offline or real-time analyses. Using calibrated timing receivers, the method is shown to provide estimates of the GNSS-to-GNSS time offsets (XYTOs) with an accuracy at the 2 ns level. In the absence of prior calibrations, 0.5 ns consistency across different stations is achieved for GPS, Galileo, and BeiDou-3 after adjustment of systematic biases in comparison with calibrated reference stations or broadcast XYTO values. Furthermore, access to GNSS-specific UTC realizations can be obtained through predictions of the UTC offset from GNSS system time as provided in the broadcast ephemerides of individual constellations. The overall quality of the PPP-BCE-derived receiver clock offsets from UTC is assessed using calibrated receivers at various timing laboratories along with BIPM-provided UTC-UTC(k) measurements. Over the 1.5 years covered in the study, an accuracy of 1.8 ns for GPS and 2.5 ns for Galileo is demonstrated. For BeiDou, a slightly worse accuracy of 3 ns is obtained for a single timing laboratory over 9 months

    Orbit determination of Sentinel-6A using the Galileo high accuracy service test signal

    Get PDF
    The High Accuracy Service (HAS) is an upcoming addition to the Galileo service portfolio that offers free correction data for precise point positioning in real-time. Beyond terrestrial and aeronautical applications, precise orbit determination (POD) of satellites in low Earth orbit (LEO) has been proposed as a potential use case for HAS corrections in view of their global availability. Based on HAS data collected during a test campaign in September 2021, the benefit of HAS corrections is assessed for real-time, onboard navigation as well as near real-time POD on the ground using GNSS observations of the Sentinel-6A LEO satellite. Compared to real-time POD using only broadcast ephemerides, performance improvements of about 40%, 10%, and 5% in terms of 3D position error can already be achieved for GPS-only, GPS + Galileo, and Galileo-only navigation. While Galileo processing benefits only moderately from the HAS correction data during the early tests in view of an already excellent Open Service performance, their use is highly advantageous for GPS processing and enables dual-constellation navigation with balanced contributions of both GNSSs for improved robustness. For near real-time offline POD, HAS corrections offer reduced latency or accuracy compared to established ultra-rapid GNSS orbit and clock products as well as independence from external sources

    Satellite-Dominated Sulfur L2,3_{2,3} X-ray Emission of Alkaline Earth Metal Sulfides

    Get PDF
    The sulfur L2,3 X-ray emission spectra of the alkaline earth metal sulfides BeS, MgS, CaS, SrS, and BaS are investigated and compared with spectra calculations based on density functional theory. Very distinct spectral shapes are found for the different compounds. With decreasing electronegativity of the cation, that is, increasing ionic bonding character, the upper valence band width and its relative spectral intensity decrease. These general trends are qualitatively reproduced by the spectra calculations, which give quite an accurate description of the spectral shapes in the upper valence band region. On the low energy side of the sulfur 3s → 2p transition dominating the spectra, we find strong satellites caused by “semi-Auger” decays involving configuration interaction. These satellites, previously believed to be energetically forbidden for sulfur L2,3 emission and only observed for the L2,3 emission of Cl to Cr, increase in intensity as the bonding character becomes more ionic and dominate the spectra for SrS and BaS. The intensities, energies, and widths of the satellites vary strongly between the investigated compounds, giving a very specific spectral fingerprint that can be used for speciation analysis

    Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    Get PDF
    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions

    Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    Get PDF
    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOXPRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U. S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS- 3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a '' stable-steady state '' after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions

    Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causesthe infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformaticstools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection,understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to getinsight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for theroutine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemicand evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets anddevelopment of therapeutic strategies. For each tool, we briefly describe its use case and how it advances researchspecifically for SARS-CoV-2.Fil: Hufsky, Franziska. Friedrich Schiller University Jena; AlemaniaFil: Lamkiewicz, Kevin. Friedrich Schiller University Jena; AlemaniaFil: Almeida, Alexandre. the Wellcome Sanger Institute; Reino UnidoFil: Aouacheria, Abdel. Centre National de la Recherche Scientifique; FranciaFil: Arighi, Cecilia. Biocuration and Literature Access at PIR; Estados UnidosFil: Bateman, Alex. European Bioinformatics Institute. Head of Protein Sequence Resources; Reino UnidoFil: Baumbach, Jan. Universitat Technical Zu Munich; AlemaniaFil: Beerenwinkel, Niko. Universitat Technical Zu Munich; AlemaniaFil: Brandt, Christian. Jena University Hospital; AlemaniaFil: Cacciabue, Marco Polo Domingo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chuguransky, Sara Rocío. European Bioinformatics Institute; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Drechsel, Oliver. Robert Koch-Institute; AlemaniaFil: Finn, Robert D.. Biocurator for Pfam and InterPro databases; Reino UnidoFil: Fritz, Adrian. Helmholtz Centre for Infection Research; AlemaniaFil: Fuchs, Stephan. Robert Koch-Institute; AlemaniaFil: Hattab, Georges. University Marburg; AlemaniaFil: Hauschild, Anne Christin. University Marburg; AlemaniaFil: Heider, Dominik. University Marburg; AlemaniaFil: Hoffmann, Marie. Freie Universität Berlin; AlemaniaFil: Hölzer, Martin. Friedrich Schiller University Jena; AlemaniaFil: Hoops, Stefan. University of Virginia; Estados UnidosFil: Kaderali, Lars. University Medicine Greifswald; AlemaniaFil: Kalvari, Ioanna. European Bioinformatics Institute; Reino UnidoFil: von Kleist, Max. Robert Koch-Institute; AlemaniaFil: Kmiecinski, Renó. Robert Koch-Institute; AlemaniaFil: Kühnert, Denise. Max Planck Institute for the Science of Human History; AlemaniaFil: Lasso, Gorka. Albert Einstein College of Medicine; Estados UnidosFil: Libin, Pieter. Hasselt University; BélgicaFil: List, Markus. Universitat Technical Zu Munich; AlemaniaFil: Löchel, Hannah F.. University Marburg; Alemani
    corecore