864 research outputs found

    Single wall carbon nanotube double quantum dot

    Full text link
    We report on two top-gate defined, coupled quantum dots in a semiconducting single wall carbon nanotube, constituting a tunable double quantum dot system. The single wall carbon nanotubes are contacted by titanium electrodes, and gated by three narrow top-gate electrodes as well as a back-gate. We show that a bias spectroscopy plot on just one of the two quantum dots can be used to extract the addition energy of both quantum dots. Furthermore, honeycomb charge stability diagrams are analyzed by an electrostatic capacitor model that includes cross capacitances, and we extract the coupling energy of the double quantum dot.Comment: Published in Applied Physics Letters 4 December 2006. http://link.aip.org/link/?APL/89/23211

    Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

    Full text link
    We image simultaneously the geometric, electronic and magnetic structure of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX), to independently characterize the geometric as well as the electronic and magnetic structure of non-flat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the eletronic structure at the atomic level, and the correlation with the resultant spin spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with SP-STM alone. Using density functional theory (DFT), we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result

    Unsupervised denoising for sparse multi-spectral computed tomography

    Full text link
    Multi-energy computed tomography (CT) with photon counting detectors (PCDs) enables spectral imaging as PCDs can assign the incoming photons to specific energy channels. However, PCDs with many spectral channels drastically increase the computational complexity of the CT reconstruction, and bespoke reconstruction algorithms need fine-tuning to varying noise statistics. \rev{Especially if many projections are taken, a large amount of data has to be collected and stored. Sparse view CT is one solution for data reduction. However, these issues are especially exacerbated when sparse imaging scenarios are encountered due to a significant reduction in photon counts.} In this work, we investigate the suitability of learning-based improvements to the challenging task of obtaining high-quality reconstructions from sparse measurements for a 64-channel PCD-CT. In particular, to overcome missing reference data for the training procedure, we propose an unsupervised denoising and artefact removal approach by exploiting different filter functions in the reconstruction and an explicit coupling of spectral channels with the nuclear norm. Performance is assessed on both simulated synthetic data and the openly available experimental Multi-Spectral Imaging via Computed Tomography (MUSIC) dataset. We compared the quality of our unsupervised method to iterative total nuclear variation regularized reconstructions and a supervised denoiser trained with reference data. We show that improved reconstruction quality can be achieved with flexibility on noise statistics and effective suppression of streaking artefacts when using unsupervised denoising with spectral coupling

    Use of gene expression profiling to identify candidate genes for pretherapeutic patient classification in acute appendicitis

    Get PDF
    Background: Phlegmonous and gangrenous appendicitis represent independent pathophysiological entities with different clinical courses ranging from spontaneous resolution to septic disease. However, reliable predictive methods for these clinical phenotypes have not yet been established. In an attempt to provide pathophysiological insights into the matter, a genomewide gene expression analysis was undertaken in patients with acute appendicitis. Methods: Peripheral blood mononuclear cells were isolated and, after histological confirmation of PA or GA, analysed for genomewide gene expression profiling using RNA microarray technology and subsequent pathway analysis. Results: Samples from 29 patients aged 7–17 years were included. Genomewide gene expression analysis was performed on 13 samples of phlegmonous and 16 of gangrenous appendicitis. From a total of 56 666 genes, 3594 were significantly differently expressed. Distinct interaction between T and B cells in the phlegmonous appendicitis group was suggested by overexpression of T cell receptor α and β subunits, CD2, CD3, MHC II, CD40L, and the B cell markers CD72 and CD79, indicating an antiviral mechanism. In the gangrenous appendicitis group, expression of genes delineating antibacterial mechanisms was found. Conclusion: These results provide evidence for different and independent gene expression in phlegmonous and gangrenous appendicitis in general, but also suggest distinct immunological patterns for the respective entities. In particular, the findings are compatible with previous evidence of spontaneous resolution in phlegmonous and progressive disease in gangrenous appendicitis
    corecore