
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng. 42, 49–69 (1998)

A SYSTEMATIC DEVELOPMENT OF ‘SOLID-SHELL’
ELEMENT FORMULATIONS FOR LINEAR AND
NON-LINEAR ANALYSES EMPLOYING ONLY
DISPLACEMENT DEGREES OF FREEDOM
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ABSTRACT

In the present contribution we propose a so-called solid-shell concept which incorporates only displacement
degrees of freedom. Thus, some major disadvantages of the usually used degenerated shell concept are
overcome. These disadvantages are related to boundary conditions—the handling of soft and hard support,
the need for special co-ordinate systems at boundaries, the connection with continuum elements—and, in
geometrically non-linear analyses, to a complicated update of the rotation vector.
First, the kinematics of the so-called solid-shell concept in analogy to the degenerated shell concept are

introduced. Then several modi�cations of the solid-shell concept are proposed to obtain locking-free solid-
shell elements, leading also to formulations which allow the use of general three-dimensional material laws
and which are also able to represent the normal stresses and strains in thickness direction. Numerical analyses
of geometrically linear and non-linear problems are �nally performed using solely assumed natural shear strain
elements with a linear approximation in in-plane direction.
Although some considerations are needed to get comparable boundary conditions in the examples analysed,

the solid-shell elements prove to work as good as the degenerated shell elements. The numerical examples
show that neither thickness nor shear locking are present even for distorted element shapes. ? 1998 John
Wiley & Sons, Ltd.

KEY WORDS: linear �nite element analysis; geometrically non-linear �nite element analysis; element technology; shell
elements

1. INTRODUCTION

General shell structures contain 
at, slightly curved and highly curved parts. They also consist
of parts with two- or three-dimensional stress states. The analyses of their linear and non-linear
behaviour should be accurate and e�cient. It is therefore desirable to combine di�erent element
types, such that the calculation of each part is as e�cient and as accurate as possible.
Most e�cient shell elements are based on the degenerated shell concept (see e.g. References

1–3). The starting point of this shell concept is the kinematics of the three-dimensional contin-
uum modi�ed by the three following assumptions and resulting in a mid-surface description in
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analogy to standard shell theory (see References 4 and 5). First, the normals to the mid-surface
in the initial con�guration remain straight but not normal during the deformation. Second, the
thickness of the elements remains constant and third the normal stress in thickness direction is
neglected. Although these approximations lead to very good results in most cases, there could
arise di�culties concerning the rotational degrees of freedom. In particular, when describing the
boundary conditions, special care of the nodal co-ordinate systems must be taken. Also there is
always the question, how to handle the rotations normal to the boundary—soft or hard support.
A complicated update of the rotations is necessary in geometrically non-linear situations. Additional
problems arise when shell elements are used in combination with solid elements. Then special
transition elements are necessary to combine shell elements having three displacement and two
rotational degrees of freedom with solid elements containing six displacement degrees of freedom.
Another di�culty occurs in using general three-dimensional material laws due to the requirement
to reduce the material law according to the normal stress condition.
So far there are two promising approaches to avoid the disadvantages mentioned above.
The �rst one described by e.g. Sansour6 and Braun7 does not constrain the element thickness

and takes the normal stress in thickness direction into account. Although these di�erences to the
degenerated shell concept allow the use of general three-dimensional material laws without any
further modi�cation, there are seven instead of �ve degrees of freedom per node necessary to avoid
locking. Special transition elements are necessary to combine these elements with solid elements
even if a kinematics with a director di�erence vector7 is used which leads to a formulation with
no rotational degrees of freedom.
The second one, well known as multidirector formulation and originally developed for the anal-

ysis of layered structures (see e.g. Reference 8) does not constrain the element thickness and takes
the normal stress in thickness direction into account. However, the complex formulation with sev-
eral layers and the ability to describe three-dimensional stress states may lead to an ine�cient
analysis, if these elements are used throughout the whole problem even for homogeneous isotropic
cases. In the present contribution we propose in analogy to earlier developments by Hallquist9

a solid-shell concept which incorporates the kinematics of the three-dimensional continuum eval-
uated in a local co-ordinate system aligned to the upper and lower surface. Thus, the well-known
assumed strain approach10 to avoid transversal shear locking can be applied and in addition the
approximations of the displacements in thickness and in-plane direction can be performed seper-
ately. The assumption that the normals remain straight is ful�lled by a linear approximation of
the in-plane displacements over the thickness. By using a linear interpolation of the displacements
in thickness direction in combination with a general three-dimensional material law, a locking
e�ect due to the normal thickness stresses and strains occurs. To circumvent this problem sev-
eral element formulations with di�erent interpolations of the displacements resp. normal strains in
thickness direction are developed in a consistent manner and discussed concerning their range of
application. Two of the proposed solid-shell elements turn out to be rather similar to developments
by Seifert11 and Parisch12 based on the kinematics presented by Schoop13 and an interpolation in
thickness direction proposed by B�uchter14 and Braun.7

The concluding numerical examples are chosen to demonstrate the capabilities of the solid-shell
concept compared to the degenerated shell concept. There is also a focus on the three-dimensional
features of the solid-shells and their condition numbers in particular in the case of rather thin
shells. Finally, the behaviour of the solid-shells for large displacement=large rotation problems is
shown compared to alternative solutions.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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2. THE SOLID-SHELL CONCEPT

In this section a shell concept is proposed that allows to overcome the known problems associated
with the rotational degrees of freedom of degenerated shell elements. However, it is essential
to achieve at least the good behaviour of the latter type elements and, optionally, to allow the
usage of general three-dimensional material laws without any further modi�cation. Therefore, the
assumption of the degenerated shell concept that the normals to the element mid-surface remain
straight but not necessarily normal during the deformation, is adopted. Thus, the initial three-
dimensional continuum of the shell geometry

X(�; �; �)= 1
2 ((1 + �)Xu(�; �) + (1− �)X‘(�; �)) (1)

and the displacements

u(�; �; �)=T(�; �)�(�)

[
TT(�; �) 03×3
03×3 TT(�; �)

] [
uu(�; �)
u‘(�; �)

]
(2)

are approximated in global Cartesian co-ordinates (e1, e2, e3) (Figure 1). In equation (2) the
matrix �(�) contains the interpolation of the displacements in thickness direction such that the
assumption cited above is ful�lled:

�(�)=
1
2


 1 + � 0 0 1− � 0 0

0 1 + � 0 0 1− � 0

0 0 1 + � 0 0 1− �


 (3)

According to the degenerated shell concept � and � are local convective co-ordinates in in-plane
direction and � is the local convective co-ordinate in thickness direction. The position X and the
displacements u of each point of the shell is described by a position vector Xu and displacements uu
of the corresponding points on the upper shell surface and on the lower shell surface X‘ and u‘. In
equation (2) T(�; �) is a transformation matrix from either a local Cartesian or a local convective
co-ordinate system on the element mid-surface to the global co-ordinate system. Applying the
relation x=X + u the geometry in the actual state which is essential for the evaluation of the
deformation gradient can be computed.
Contrary to the kinematics used for degenerated shell elements the weak form

��=
∫
V
�E · S dV + ��ext = 0 ��ext : : : external work (4)

now contains the complete Green–Lagrange strain tensor E and the corresponding 2. Piola–
Kirchho� stress tensor S.
The kinematics of the solid-shell concept are identical to the kinematics of the ‘Double-node-

model’ proposed by Schoop in 1986,13 which is based directly on the degenerated shell concept
leading to the geometry in the reference con�guration

X(�; �; �)= 1
2 (Xu(�; �) + X‘(�; �))︸ ︷︷ ︸

XR(�; �)

+1
2� (Xu(�; �)− X‘(�; �))︸ ︷︷ ︸

h(�; �)D(�; �)

(5)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)



52 R. HAUPTMANN AND K. SCHWEIZERHOF

Figure 1. Geometry of the solid-shell element

and in the current con�guration

x(�; �; �)= 1
2 (xu(�; �) + x‘(�; �))︸ ︷︷ ︸

xR(�; �)

+1
2 � (xu(�; �)− x‘(�; �))︸ ︷︷ ︸

h(�; �)d(�; �)

(6)

with the thickness h(�; �) and the director in the deformed d(�; �) and undeformed con�guration
D(�; �). It must be noted that in order to develop locking-free element formulations the solid-shell
concept allows to change the interpolation in thickness direction by a simple modi�cation of the
interpolation matrix, see equation (3).

2.1. Locking e�ects occurring to elements based on the solid-shell concept

2.1.1. Transversal shear and membrane locking. In equivalence to degenerated shell elements
solid-shell elements su�er from transversal shear and membrane locking. Several methods are
known to circumvent this limitation, e.g. the Assumed Natural Strain Method (ANS), the Assumed
Stress Method or the Enhanced Assumed Strain Method (EAS).
To apply one of these methods to solid-shell elements the quantities in the weak form in equation

(4) have to be transformed to a local co-ordinate system with the two axes X′, Y′ aligned to the
element mid-surface and the third axis Z′ in thickness direction.

2.1.2. Thickness locking. According to the investigations in the literature see e.g. References 6
and 7, a formulation with a linear w′ displacement assumption in thickness direction tends to
so-called thickness locking, which will be also observed in the numerical analyses. This undesired
locking e�ect occurs due to the constant approximation of the strain E�� in thickness direction
contrary to a linear S�� stress distribution found when bending occurs. The reason for the E��
varying linearly in thickness direction is the coupling between the linear in-plane strains and the
normal stress in thickness direction if the Poisson-ratio is not equal to zero (see Figure 2).
This limitation could be overcome by applying the plane stress condition according to the

degenerated shell concept or by directly assuming a linear distribution of the normal strain in

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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Figure 2. Beam subjected to bending moments

thickness direction over the thickness. As is well known, the plane stress assumption leads to a
slightly too sti� behaviour in shell analyses.

3. SYSTEMATIC DEVELOPMENT OF LOCKING-FREE SOLID-SHELL ELEMENTS

3.1. Solid-shell elements employing the plane stress condition

This contribution is restricted to the linear elastic isotropic St. Venant–Kirchho� material law.
Modifying the material law according to the plane stress condition (S��=0) leads to a linear
displacement distribution in thickness direction. However, the corresponding weak form (4) does
not contain any part for the thickness direction and therefore an element formulation results which
exhibits zero energy modes.
To overcome this limitation several possibilities to ful�ll the assumption of the degenerated

shell concept that the element thickness remains constant during the deformation are investigated
in the following. The �rst idea is to condense out one degree of freedom in equation (2) by
the assumption that the displacement in thickness direction of the upper surface is equal to the
displacement of the lower surface

w′(�; �; 1)=w′(�; �;−1) (7)

which leads—contrary to the original solid-shell concept—to a formulation with �ve degrees of
freedom. However, because of the constraint that the thickness direction must not be parallel to
either the global x-axis or the global y-axis, this formulation lacks generality. Another approach
is to add equation (7) by a penalty parameter to the equations resulting from (4). However, the
resulting ‘sti�ness’ matrix is then not symmetric and thus this approach is very ine�cient.
Another formulation proposed in this contribution avoids zero energy modes by adding a sti�ness

in thickness direction. Therefore, the variational functional is modi�ed in the following fashion:

� =
1
2

∫
V
E · S dV + 1

2

∫
V
E�� �EE�� dV +�ext

=
1
2

∫
V
E · CredE dV + 12

∫
V
E�� �EE�� dV +�ext

(8)

with E�� being the Green–Lagrange strain component in thickness direction, Cred the modi�ed St.
Venant–Kirchho� material matrix not including any value in � direction and �E is Youngs modulus
transformed to a local co-ordinate system. Thus, the �rst integral of the functional (8) contains
in-plane and transversal shear strains and stresses. The second penalty-type integral term—with
a penalty factor �= �E—is constructed of the normal strain in thickness direction E�� evaluated
from the displacements and the corresponding part of the normal stress S��= �EE��. Thus, normal
stresses and strains in thickness direction can be computed. However, for the evaluation of these

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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Figure 3. Division of the normal strains E�� into a constant and a linear part

stresses and strains the in
uence of the transversal contraction due to in-plane stretching is ne-
glected. A minor but not better modi�cation to this element formulation which is only mentioned
for completeness is achieved by assuming a constant instead of linear w′ displacement for the
computation of the transversal shear strains E�� and E��.
Another locking-free formulation with the additional advantage of obtaining a consistent thick-

ness straining due to the coupling is obtained by dividing the normal stress in thickness direction
into a constant—the membrane—and a linear—the bending—part (see Figure 3). After employing
a one-point-integration in thickness direction for the coupling terms of the bending and membrane
stresses and strains ∫

V
Em · Sb dV =

∫
V
Eb · Sm dV =0 (9)

the variational functional is written in the following form:

�=
1
2

∫
V
Eb · Sb dV︸ ︷︷ ︸

bending part

+
1
2

∫
V
Em · Sm dV︸ ︷︷ ︸

membrane part

+
1
2

∫
V
Ets · Sts dV︸ ︷︷ ︸
shear part

+�ext (10)

To obtain a linear distribution of the normal strains in thickness direction, which is needed to
avoid locking, again the zero normal stress condition according to the degenerated shell concept
is applied to the bending part Sb��=0. Thus, the linear normal strain in thickness direction

Eb��=− �
�+ 2�

(Eb�� + E
b
��) (11)

is introduced by a reduction of the St. Venant–Kirchho� material law leading to the linear in-plane
stresses Sb =C

ip
redEb. The constant in-plane stresses Sm and the shear stresses Sts are computed

using the general three-dimensional material law without any further modi�cation. However, it must
be noted that the assumed distributions of the normal stresses and strains in thickness direction over
the thickness are only correct for 
at elements. This e�ect will be visible for curved structures.

3.2. Solid-shell elements employing directly a linear distribution of the normal strains
in thickness direction

One way to achieve a linear distribution of the normal stress in thickness direction is to assume
a quadratic interpolation of the displacement w′ in thickness direction as suggested by Gruttmann.8

By assuming a quadratic hierarchical distribution of the w′ displacement (see Figure 4) the

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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Figure 4. Hierarchical quadratic interpolation in � direction

displacements are approximated as follows:

u(�; �; �)=T(�; �) ��(�)


T

T(�; �) 03×3 03×1
03×3 TT(�; �) 03×1
01×3 01×3 1




 uu(�; �)u‘(�; �)

�(�; �)


 (12)

with the interpolation matrix containing the contributions in thickness direction

��(�)=
1
2



1 + � 0 0 1− � 0 0 0

0 1 + � 0 0 1− � 0 0

0 0 1 + � 0 0 1− � 1− �2


 (13)

A rather similar approach was introduced by B�uchter14 for degenerated shells and adopted to the
‘Double-node-model’ (6) by Seifert11 leading to the approximation of the geometry in the current
con�guration

x(�; �; �)= 1
2 (xu(�; �) + x‘(�; �)) +

1
2 (�+ �(�; �)�

2) (xu(�; �)− x‘(�; �)) (14)

The choice of the quadratic interpolation in thickness direction � together with the kinematics
of the ‘Double-node-model’11 leads to an inconsistent displacement approximation in thickness
direction due to the quadratic term not vanishing at the surfaces �=1 and �=−1 for �(�; �) 6=0,
e.g.

x(�; �; �=1)= xu(�; �) + 1
2 �(�; �) (xu(�; �)− x‘(�; �)) 6= xu(�; �) (15)

Also the element formulation proposed by Parisch12 is based on this geometry approximation, but
the interpolation 1 − �2 instead of �2 in direction of the deformed director is used, leading to a
consistent displacement approximation in thickness direction. The di�erences between the solid-
shell concept and the geometry approximation in equation (14) are obvious if the displacements
are written in local co-ordinates aligned to the shell mid-surface

u′(�; �; �)= 1
2 (u

′
u(�; �) + u

′
‘(�; �)) +

1
2 �(u

′
u(�; �)− u′‘(�; �)) + h(�; �) (16)

In equation (16) the abbreviation h(�; �) takes for the solid-shell concept the form

h(�; �)=


 h

′
x

h′y
h′z


= 1

2
(1 + �2)�(�; �)


 00
1


 (17)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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and for the geometry approximation according to Seifert and Parisch the form

h(�; �)=


 h

′
x

h′y
h′z


= 1

2
f̂ (�)�(�; �)


 u′u − u′‘
v′u − v′‘
w′
u − w′

‘


 with f̂ (�)=

{
�2 Seifert

1− �2 Parisch
(18)

Obviously, the interpolation of Seifert and Parisch may lead to a quadratic distribution of the
in-plane strains and therefore a mild locking may occur in transversal shear dominated cases.
In addition, Parisch eliminates the seventh degree of freedom per edge on element level by static
condensation resulting in thickness strains which are inconsistent to the neighbour elements in
in-plane direction. Such a condensation is rather complicated for a consistent treatment in geomet-
rically non-linear problems and similar to the procedure described in Box 1.

1. Update on element level
• Nodal displacements

dk+1e = dke +�d
k
e

• Element parameters
�k+1e = �ke − (De)−1 (Lke�dke +Pke )

2. Computation on element level and at each integration point
• Enhanced strains

Ẽ=Me�k+1e

• Tangent sti�ness matrix
Ketang =Ke − LTeD−1

e Le

• Element residual vector
fe = feext − Re +LTeD−1

e Pe

3. Global computation
• Assembly of the global matrices=vectors
• Solution of the global system of equations

�dk+1 = (Kk+1tang )
−1f k+1

• Convergence control:
−‖f k+1‖¡Tol: next load step
−‖f k+1‖¿Tol: k = k +1 and go to 1.

Box 1. Iterative solution algorithm for non-linear problems

Another way to obtain a linear distribution of the normal strain in thickness direction could be
achieved by adding to the Green–Lagrange strain Ek�� a component Ẽ�� with a linear variation in

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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thickness direction

E��=Ek��+ Ẽ�� (19)

in analogy to the enhanced assumed strain method (EAS).15 This method is based on the well-
known three-�eld functional of Hu–Washizu which can be written as two-�eld functional

�HW(u; Ẽ)=
∫
V
W (Ek + Ẽ) dV +�ext(u) W : : : Energy density function (20)

by employing the well-known assumptions of the EAS method. Also the corresponding weak form

��HW(u; Ẽ)=
∫
V
(�Ek + �Ẽ) ·S dV + ��ext(u) with S=

@W
@E

(21)

is obtained.
Discretizing the displacements u= u(de) where de is the element nodal displacement vector and

discretizing also the assumed strains Ẽ= Ẽ(�e) where �e are independent parameters on element
level the following tangent sti�ness matrix:

Ketang =Ke − LTeD−1
e Le (22)

and the corresponding load vector

fe = feext − feint = feext − (Re − LTeD−1
e Pe) (23)

are obtained by using the abbreviations

Ke =
∫
V

(
@2Ek
@d2e

·S+ @Ek
@de

· @S
@de

)
dV Le =

∫
V

@Ẽ
@�e

· @S
@de

dV

Re =
∫
V

@Ek
@de

·S dV Pe =
∫
V

@Ẽ
@�e

·S dV

De =
∫
V

@Ẽ
@�e

· @S
@�e

dV

(24)

According to equation (19) the assumed strain �eld Ẽ(�) contains solely zero elements except
for

Ẽ��= �Me(�; �)�e; (25)

with the matrixMe(�; �) describing the interpolation in in-plane direction which is chosen similar to
the corresponding displacement interpolation. In addition, the matrix Me(�; �) generally contains
a transformation to a co-ordinate system at the element midpoint in order to obtain a unique
de�nition for the parameters �e throughout the whole element.
In Box 1 the solution procedure for the non-linear problem is summarized.

4. FE DISCRETIZATION OF THE VARIOUS SOLID-SHELL ELEMENTS

After discretization the geometry in the reference con�guration (Figure 5)

X(�; �; �)=
n∑
i=1

1
2
Ni(�; �)((1+ �) �Xiu + (1− �) �Xi‘) (26)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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Figure 5. Discrete geometry of a solid-shell element

and the displacements

u(�; �; �)=
n∑
i=1

(
Ni(�; �)T(�; �)�(�)

[
TT(�; �) 03×3
03×3 TT(�; �)

]
die

)
(27)

depend on the two-dimensional shape functions in in-plane direction Ni(�; �), on the element nodal
displacement vector

die = [�u
T
iu ; �u

T
i‘]
T = [ �uiu ; �viu ; �wiu ; �ui‘; �vi‘; �wi‘]T (28)

and on the position vectors to the upper and lower node of edge i

�Xiu = [ �Xi; �Yi; �Zi]Tu �Xi‘= [ �Xi; �Yi; �Zi]T‘ (29)

In equations (26) and (27) n denotes the number of edges per element and a bar stands for
a displacement or position of a node of the corresponding edge i.
Choosing a local contravariant base system leads to the transformation matrix

T(�; �)=
[
@xm(�; �)
@�

;
@xm(�; �)
@�

;
@xm(�; �)
@�

]
(30)

with the defomed geometry of the middle surface

xm = 1
2(xu(�; �)+ x‘(�; �))
1
2 (Xu(�; �)+ uu(�; �)+X‘(�; �)u‘(�; �))

(31)

Due to the relationship for linear problems

T(�; �)= JT(�; �; �=0) J(�; �; �) : : : Jacobian matrix (32)

this choice leads to a quite e�cient element formulation. However, if the matrix (3) is not modi�ed
there is no need for a transformation and thus

T(�; �)= 13×3 (33)

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)
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Figure 6. Assumed natural transversal shear strains

4.1. Common aspects of the discretization of the investigated solid-shell elements

Although the locking-free solid-shell elements proposed in Section 3 could be used with any
order of approximation in in-plane direction, only elements with bilinear approximation are in-
vestigated in this contribution. Thus, the problem of transversal shear locking which appears with
low-order Reissner–Mindlin elements has to be considered. In the case of the 4-node degenerated
shell element, the assumed natural strain concept (ANS) developed by Bathe and Dvorkin16 has
proven to be very e�cient, very robust and gives very good results.
Thus, this method is combined with the element formulations proposed in the previous sec-

tions which is possible because the evaluation of the stresses and strains is performed in local
co-ordinates. The essential assumption of the assumed natural strain concept is to assume the
transversal shear interpolation in local convective co-ordinates to be constant in � and linear in �
direction for E��, respectively, to be constant in � and linear in � direction for E�� (Figure 6)

E��= 1
2(1− �)EA��+ 1

2(1+ �)E
C
�� E��= 1

2(1− �)ED��+ 1
2(1+ �)E

B
�� (34)

The simplest element based on the solid-shell kinematics without any further modi�cation besides
using the interpolation of the transversal shear strains (34) has four edges per element, six degrees
of freedom per edge and is named ANS3DL in the following sections.

4.2. Solid-shell element formulations employing the plane stress assumption

4.2.1. The ANS6z solid-shell element. The locking-free solid-shell element formulation named
ANS6z is based on the modi�ed functional (8). Due to the assumed strains (34) in local convec-
tive co-ordinates, a very e�cient element formulation is obtained by evaluating both integrals of
equation (8) in local convective co-ordinates. Therefore, the St. Venant–Kirchho� material law

Cabcd= ��ab�cd+ �(�ac�bd+ �ad�bc); �ij =

{
1; i= j

0; i 6= j (35)

must be �rst transformed to local convective co-ordinates and then reduced according to the zero
stress condition. In addition, the factor �E is obtained from Youngs modulus E by the following
transformation:

�E=
(
@X
@�

· @X
@�

)(
@X
@�

· @X
@�

)
E (36)

4.2.2. The ANS3DLr solid-shell element. Alternatively to the ANS6z element a solid-shell
element formulation named ANS3DLr is introduced which takes the in
uence of the transversal
contraction due to membrane stretching into account. Thus, this element is based on functional (10)
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which leads to the following weak form:

��=
∫
V
�Eb ·CipredEb dV +

∫
V
�Em ·CipEm dV +

∫
V
�Ets ·CtsEts dV +�ext (37)

In equation (37) the Green–Lagrange strains are split into the second-order tensor Eb with in-plane
strains varying linearly in thickness direction, the tensor Em with in-plane and normal strains con-
stant in thickness direction and the tensor Ets of the transversal shear strain components. Then the
fourth-order tensor Cipred contains the in-plane and thickness components of the reduced St. Venant–
Kirchho� material tensor, the tensors Cip and Cts contain the in-plane and thickness components,
respectively, transversal shear components of the corresponding unmodi�ed material tensor.
Again an evaluation of all three integrals of equation (37) in local convective co-ordinates

results in a very e�cient element formulation.

4.3. Solid-shell element formulations employing directly a linear distribution of the normal
strains in thicknesss direction

4.3.1. The ANS3Dq solid-shell element. The �rst solid-shell element formulation named
ANS3Dq which allows the use of general three-dimensional material laws is based on a hierar-
chical quadratic interpolation of the displacement w′ in thickness direction.8 After discretization
the displacement interpolation (12) takes the form

u(�; �; �)=
4∑
i=1


Ni(�; �)T(�; �) ��(�)


T

T(�; �) 03×3 03×1
03×3 TT(�; �) 03×1
01×3 01×3 1


 die


 (38)

with the matrix ��(�) containing the interpolation of the displacements in thickness direction (13)
and the element nodal displacement vector

die = [�u
T
iu ; �u

T
i‘; �i]

T = [ �uiu ; �viu ; �wiu ; �ui‘; �vi‘; �wi‘; �i]
T : (39)

Thus, the ANS3Dq solid-shell element formulation has seven instead of six degrees of freedom
per edge i. Again the transformation matrix T is evaluated using equation (30) which is based on
a linear interpolation of the displacements in thickness direction.

4.3.2. The ANS3DEAS solid-shell element. The solid-shell formulation introduced in this sec-
tion is based on the two-�eld functional (20) and is named ANS3DEAS. Due to the bilinear
displacement approximation in in-plane direction the following matrix:

Me = [ 1 � � �� ] (40)

�rst proposed by B�uchter14 and the vector �e containing the four unknown element parameters

�e = [ �1 �2 �3 �4 ]T (41)

which are belonging to the enhanced normal strains (25), are chosen. In most cases a shell el-
ement based on a bilinear geometry and displacement approximation is 
at and therefore the
transformation of the parameters �e is neglected.
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Table I. Eigenvalues of a square element; thickness to length ratio t=l=2=100

EigenvaluesRigid body
Element motion Kinematics ¡0·1 ¡1·0 ¡1000 Max.

ANS5 1–6 — 7–11 12–17 18–20 2·54
ANS6z 1–6 — 7–9 10–16 17–23 1365
ANS3DLr 1–6 — 7–9 10–16 17–23 1838
ANS3DL 1–6 — 7 8–16 17–23 1838
ANS3Dq 1–6 — 7–9 10–16 17–26 1838
ANS3DEAS 1–6 — 7–9 10–16 17–23 1838

Also it is straightforward to enhance the membrane strains following Reference 15 which leads
to a superiour behaviour in membrane dominated cases. However, to limit the length of this
contribution such a modi�cation to the ANS3DEAS element is not discussed here but it is referred
to Hauptmann.17

5. NUMERICAL EXAMPLES

The following numerical analyses are all performed with 4-edge, respectively, 8-node elements,
based on the formulations described in the previous sections. In addition to the ANS6z, ANS3DL,
ANS3DLr, ANS3Dq and ANS3DEAS elements, a 4-node element based on the degenerated shell
concept and modi�ed according to the assumed natural shear strain method is used for comparison
purposes. This element is referred to as ANS5, see e.g. Gebhardt Reference 18.

5.1. Investigation of eigenvalues

To get some information about the element behaviour concerning zero energy modes and possible
locking tendencies, the eigenvalues of each element are computed. The chosen element shape is
typical for an element contained in a regular mesh of a square plate.
Two situations are investigated. First, an element with a thickness to length ratio of t=l=2=100

is chosen. This represents a discretization with very coarse meshes or a rather thin plate=shell.
Then an element with a thickness to length ratio of t=l=1 is chosen. Such element shapes are
necessary to obtain converged results in the case of highly curved structures e.g. the pinched
cylinder (see Section 5.2) or at locations with almost three-dimensional stress states. The essential
conclusion from the results listed in Tables I and II is that none of the element formulations shows
a serious tendency to lock or exhibits zero energy modes. Also, it is obvious that all solid-shell
formulations proposed in this contribution show in the case of very coarse meshes much larger
eigenvalues than the elements based on the degenerated shell concept which is due to the large
sti�ness in thickness direction and a conditioning problem may result. However, if �ner meshes—
mostly necessary for converged results—are considered, the di�erence between the eigenvalues of
each element formulation is not signi�cant. Remarkably, in the case of very �ne meshes as e.g.
needed to analyse highly curved structures, the eigenvalues of the degenerated shell concept are
even larger than those of the solid-shells.
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Table II. Eigenvalues of a square element; thickness to length ratio t=l=1

EigenvaluesRigid body
Element motion Kinematics ¡0·1 ¡1·0 Max.

ANS5 1–6 — 7–12 13–18 1·56
ANS6z 1–6 — 7–11 12–24 0·78
ANS3DLr 1–6 — 7–10 11–23 1·36
ANS3DL 1–6 — 7–8 9–23 1·36
ANS3Dq 1–6 — 7–11 12–27 1·36
ANS3DEAS 1–6 — 7–10 11–23 1·36

Figure 7. Simply supported square plate

5.2. Linear analyses

5.2.1. Simply supported square plate under distributed loading. Due to the symmetry of the
square plate (Figure 7) which is simply supported (hard), only one fourth of the plate is analyzed
using one element in thickness direction. In the following three diagrams the normalized vertical
displacement of the centre of the plate is shown over the number of elements per area. To normalize
the vertical displacement the analytical solution of Timoshenko19 is used. The chosen thickness to
length ratio accounts for a rather thin plate and locking should be observed, if present.
Because of the 
at structure the vertical displacements of the upper surface are identical to those

of the lower surface and the ANS5, ANS6z, ANS3DLr and ANS3DEAS elements lead to identical
results. It is obvious that contrary to the other element formulations, the ANS3DL element does
not converge to the analytical solution. It shows clearly a tendency to lock as mentioned before
in Section 2.1.2 which can be attributed to the coupling of the normal stress in thickness direction
and the strains in in-plane direction. To investigate this undesirable e�ect further, a discretization
of the plate with 8 × 8 elements in in-plane direction is used while the number of elements in
thickness direction is varied (Figure 9).
As shown in Figure 9 the modi�ed solid-shell elements reproduce the analytical solution already

with one element in thickness direction whereas eight elements are necessary for the ANS3DL
formulation. It is also interesting to note that the three-dimensional e�ect is also visible for the
ANS3Dq element, when eight elements are used in thickness direction.
The last important aspect is the in
uence of element distortions on the convergence properties.

Thus, the vertical displacement of the distorted mesh shown in Figure 10 is computed for a
discretization with varying mesh density.
For coarse meshes the results given in Figure 11 are slightly worse compared to the results of

a regular mesh, but the overall behaviour of the elements remains unchanged.
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Figure 8. Convergence investigation for various element formulations; simply supported square plate with regular mesh

Figure 9. Convergence investigation for various element formulations; varying the number of elements in thickness direction

Figure 10. Distorted mesh of the square plate
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Figure 11. Convergence investigation for various element formulations; thin square plate with distorted mesh

Figure 12. Geometry and material data of the pinched cylinder, see e.g. Reference 16

5.2.2. Pinched cylinder subjected to opposite point loads. This highly curved structure as given
in Figure 12 is known to cause a low convergence rate especially in the case of elements with
linear shape functions. For the following analyses only an eighth of the cylinder is discretizied due
to symmetry, which is then also enforced on the results. The displacements of the upper and lower
surface are computed for the loading point, but due to the minor di�erences of both displacements
only the displacements of the upper surface are shown here.
In this problem it is not possible to match the boundary conditions of the degenerated shells

correctly by using a discretization with one element in thickness direction for the solid-shells and
therefore some di�erences are found, see Figure 13. Although the vertical displacements of the
proposed elements di�er from the ANS5 shell element clearly for coarse meshes, they coincide
quite well in the case of �ner meshes when the number of elements reaches the number necessary
to get results close to the analytical solution also for the ANS5 shell element. Theses di�erences
for coarse meshes can be attributed to the fact that the boundary condition at the longitudinal edge,
which is di�erent for the solid-shell and the shell element, is felt more for too coarse meshes.
Again, the ANS3DL element locks slightly.
Additional linear investigations not presented here for brevity reasons show that the ANS3Dq,

ANS3DLr and ANS3DEAS elements are able to describe transversal load conditions correctly. As
expected the ANS3DL elements behaves too sti� due to locking and the ANS6z element behaves
too 
exible due to the neglected coupling terms.
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Figure 13. Convergence investigation for the pinched cylinder; displacements of upper surface

Figure 14. Geometry and material data of the hemisphere

5.3. Geometrically non-linear analyses

5.3.1. Hemisphere loaded by pinching forces. A hemisphere with a 18◦ hole loaded by pinching
forces is often cited as a benchmark problem for shell elements to analyse the ability to model
rigid body modes and inextensional bending. To obtain comparable results to investigations by
Parisch12 the same geometry and material data (see Figure 14) and the same coarse discretization
with 16×16× 1 bilinear solid-shell elements per quarter section are used.
As expected the load de
ection curves indicate in the case of larger displacements for the

solid-shell elements a sti�er behaviour than for the 4-node degenerated shell element (ANS5),
see Figure 15. There are no di�erences between the load de
ection curves obtained with the
ANS3Dq element and between the load de
ection curve of the 3D-SHEL4 element presented in
Reference 12. The reason is that the pinched hemisphere is not dominated by transversal shear
and thus the director remains normal to the mid-surface even in the deformed con�guration.
However, additional investigations show that a discretization with 16× 16× 1 elements per

quarter section is far too coarse to get reliable results. Thus, the load de
ection curves presented
in Figure 16 are computed using a re�ned mesh with 32× 32× 1 elements.
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Figure 15. Pinched hemisphere; 16× 16× 1 elements; load–de
ection diagram; displacement of point A

Figure 16. Pinched hemisphere; 32× 32× 1 elements; load–de
ection diagram; displacement of point A

Then even for larger displacements there are no signi�cant di�erences visible in the load de-

ection curves of the degenerated shell element and of the solid-shell elements ANS6z, ANS3Dq
and ANS3DEAS. In equivalence to the previous linear analyses the ANS3DL element behaves too
sti� and the ANS3DLr element behaves too 
exible.

5.3.2. Pinched cylinder subjected to opposite point loads. For the geometry and material data the
same values as given in Figure 12 are used. Due to the symmetry of the structure, only one eighth
of the cylinder is investigated using on purpose a fairly coarse mesh with 24× 24 elements in
in-plane and one element in thickness direction. Although it is impossible to match the boundary
conditions of the degenerated shell elements correctly, the di�erence in the load displacement
curves of the ANS6z, ANS3Dq, ANS3DEAS elements and the ANS5 element are not signi�cant
which is particulary visible for smaller displacements. However, when the displacements increase
the di�erence in the boundary conditions of the diaphragm is responsible for the larger di�erence
in the results. As already obtained in Section 2.1.2, the ANS3DL element locks which is visible
already for rather small displacements and thus the di�erence to the other load–de
ection curves
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Figure 17. Pinched cylinder; load–de
ection diagram; displacement of point A

Figure 18. Deformed geometry of the pinched cylinder at the last load increment

becomes larger with increasing displacements. Again the ANS3DLr element shows clearly a too

exible behaviour due to the missing coupling terms. In addition, convergence is not obtained
throughout the whole load displacement curve because the mesh is too coarse, but total convergence
can be achieved using a �ner mesh.
Thus, it can be stated that the ANS3DLr element is not as robust as the ANS6z, ANS3Dq or

ANS3DEAS elements in the non-linear analysis of highly curved structures.
It also must be mentioned that the ‘non-smooth’ curves observed in the load de
ection dia-

grams for larger displacements apparently indicating a snap through like behaviour are a result
of the rather coarse mesh taken here on purpose for all elements to investigate the robustness.
The wriggles in the curves occur because kinks are developing during the loading process (see
Figure 18) which cannot be correctly described by coarse meshes. They disappear completely for
�ner meshes, which are not shown here for brevity reasons.

6. CONCLUSIONS

In the present contribution an alternative formulation to the degenerated shell concept is presented.
The proposed so-called solid-shell concept incorporates only displacement degrees of freedom
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and is based on a linear approximation of all displacements in thickness direction, whereas the
approximation in in-plane direction can be enhanced easily. Thus, the assumption of the standard
shell concepts that the normals remain straight is ful�lled. Due to the absence of rotational degrees
of freedom, the need for special co-ordinate systems at boundaries and, in geometrically non-linear
analyses, the complicated update of the rotation vector is avoided. Also the boundary conditions
can be enforced in a physically clear manner, as only displacements are involved. Contrary to the
degenerated shell concept normal stresses and strains in thickness direction can be evaluated. In
addition, no special transition elements are necessary, if solid-shell elements are combined with
solid elements. However, there is a drawback of a minor increase of the total number of degrees
of freedom.
Several locking-free solid-shell element formulations are discussed. Inspecting an element that

is based on the solid-shell concept without any further modi�cation locking appears due to the
coupling of the membrane strains and the normal strains in thickness direction. Two ways to avoid
this locking phenomena are proposed. The �rst one is based on the introduction of the plane stress
condition and the second one on the introduction of linear strains in thickness direction in a direct
way leading to two locking-free solid-shell element formulations for each approach. The major
disadvantage of the two solid-shell elements based on the plane stress condition is the limitation
to reduced material laws whereas the both elements based on the direct assumption of a linear
strain distribution in thickness direction are less e�cient. However, the overall behaviour of all
proposed locking-free solid-shell elements is very favourable.
Obviously, it is not possible using the proposed solid-shell element formulations to describe

three-dimensional stress states correctly by using a discretization with only one element through
the thickness. Although with the application of more elements in thickness direction this limitation
could be overcome, the mesh input becomes rather complicated. It is then preferable to apply
higher-order approximations of all displacements in thickness direction—in-plane displacements u′

and v′ at least cubic and the displacement in thickness direction w′ at least quadratic (see e.g.
References 6 and 7).
However, due to the possibility to combine the proposed element formulations straightforward

with standard solid elements, there seems to be no need for the latter approach.

REFERENCES

1. S. Ahmad, B. M. Irons and O. C. Zienkiewicz, ‘Analysis of thick and thin shell structures by curved �nite elements’,
Int. J. Numer. Meth. Engng., 2, 419–451 (1970).

2. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cli�s, N.J., 1982.
3. E. Ramm, ‘A plate=shell element for large de
ections and rotations’, in K. J. Bathe et al., Formulations and
Computational Algorithms in Finite Element Analysis, MIT Press, Cambridge, MA, 1977.

4. R. D. Mindlin, ‘In
uence of rotatory inertia and shear in 
exural motions of isotropic elastic plates’, J. Appl. Mech.
18, 31–38 (1951).

5. E. Reissner, ‘The e�ect of transverse shear deformation on the bending of elastic plates’, J. Appl. Mech., 12, 69–76
(1945).

6. C. Sansour, ‘A theory and �nite element formulation of shells at �nite deformations involving thickness change’, Arch.
Appl. Mech., 65, 194–216 (1995).

7. M. Braun, Nichtlineare Analysen von geschichteten elastischen Fl�achentragwerken, Bericht Nr. 19, Institut f�ur
Baustatik, Universit�at Stuttgart, 1995.

8. F. Gruttmann, Theorie und Numerik d�unnwandiger Faserverbundstrukturen; Bericht No. F96=1, Institut f�ur
Baumechanik und Numerische Mechanik, Universit�at Hannover, 1996.

9. J. O. Hallquist, Latest developments in LS-DYNA3D vs 910, Livermore Software Technology Corporation, 1991.
10. K. J. Bathe and E. Dvorkin, ‘A continuum mechanics based four-node shell element for general nonlinear analysis’,

Engng. Comput., 1, 77–88 (1984).

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)



SOLID-SHELL ELEMENT FORMULATIONS 69

11. B. Seifert, Zur Theorie und Numerik Finiter elastoplastischer Deformationen von Schalenstrukturen, Bericht No.
F96=2, Institut f�ur Baumechanik und Numerische Mechanik, Universit�at Hannover, 1996.

12. H. Parisch, ‘A continuum-based shell theory for non-linear applications’, Int. J. Numer. Meth. Engng., 38, 1855–1883
(1995).

13. H. Schoop, ‘Ober
�achenorientierte Schalentheorien endlicher Verschiebungen’, Ingenieur-Arch., 56, 427–437 (1986).
14. N. B�uchter and E. Ramm, ‘3D-extension of nonlinear shell equations based on the enhanced assumed strain concept’,

in Ch. Hirsch, J. Periaux and E. Onate (eds.), Computational Methods in Applied Sciences, Amsterdam, 1992.
15. J. C. Simo and M. S, Rifai, ‘A class of mixed assumed strain methods and the method of incompatible modes’, Int.

J. Numer. Meth. Engng., 29, 1595–1638 (1990).
16. T. Belytschko, H. Stolarski, W. K. Liu, N. Carpenter and J. S. J. Ong, ‘Stress projection for membrane and shear

locking in shell Finite Elements’, Comput. Meth. Appl. Mech. Engng., 51, 221–258 (1985).
17. R. Hauptmann, Entwicklung und Gegen�uberstellung von strukturangepa�sten, geometrisch nichlinearen Finiten Elementen

zur e�zienten Fl�achentragwerksberechnung, Institut f�ur Mechanik, Universit�at Karlsruhe, Dissertation, 1997, submitted.
18. H. Gebhardt, Finite Element Konzepte f�ur schubelastische Schalen mit endlichen Drehungen, Dissertation, Institut f�ur

Baustatik, Universit�at Karlsruhe, 1990.
19. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd. edn, McGraw-Hill, New York, 1959.
20. M. A. Cris�eld, Non-linear Finite Element Analysis of Solids and Structures, Wiley, Chichester, New York, Brisbane,

Toronto, Singapore, 1991.
21. A. C. Scordelis and K. S. Lo, ‘Computer Analysis of Cylindrical Shells’, J. Amer. Concr. Inst., 61, 539–561 (1969).

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 42, 49–69 (1998)




