9 research outputs found

    Immunological synapse formation between T regulatory cells and cancer-associated fibroblasts promotes tumour development

    Get PDF
    Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner

    Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans

    Get PDF
    Candida albicans cell wall component β-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed trained immunity. We show that a high-complexity blend of two individual β-glucans from Saccharomyces cerevisiae possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules. By activating multiple receptors and downstream signaling pathways, the components of this β-glucan preparation are able to act synergistically, causing a robust secondary response upon an unrelated challenge. In in-vivo murine models of melanoma and bladder cell carcinoma, pre-treatment of mice with the β-glucan preparation led to a significant reduction in tumor growth. These insights may aid in the development of future therapies based on β-glucan structures that induce an effective trained immunity response

    Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity

    Get PDF
    Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with beta-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of beta-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from beta-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of beta-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis

    The role of neutrophils in trained immunity

    No full text
    The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, “trained”, neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis

    Pathogenicity of a human thyroglobulin peptide (2340–2359) in mice with high or low genetic susceptibility to thyroiditis

    No full text
    We have previously identified a 20-mer peptide of human thyroglobulin (hTg), p2340 (aa2340–2359), which induced experimental autoimmune thyroiditis (EAT) in AKR/J (H-2k) and HLA-DR3 transgenic mice. In this study, we investigated the thyroiditogenic potential of p2340 in ‘high responder’ CBA/J (H-2k) and SJL/J (H-2s) or ‘low responder’ C57BL/6 (H-2b) and BALB/c (H-2d) mice. Mice were immunized subcutaneously with 100 nmol of p2340 in complete Freund's adjuvant (CFA) and both the proliferative capacity of their lymph node cells in the presence of p2340 or intact Tg and the production of peptide-specific antibodies were investigated. The p2340 peptide was found to contain B-cell and non-dominant T-cell epitope(s) in all strains tested. Moreover, it elicited EAT in CBA/J (2/6, infiltration index (I.I.) 1) and SJL/J (5/5, I.I. 1-3) mice after direct challenge and in BALB/c (4/7, I.I. 1) and C57BL/6 (1/5, I.I. 1) after adoptive transfer of p2340-primed lymph node cells. P2340 is the first Tg peptide found to be pathogenic in low as well as high responder mouse strains and thus will allow us to investigate mechanisms of EAT induction in a genetically resistant host

    DataSheet_1_Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans.docx

    No full text
    Candida albicans cell wall component β-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed trained immunity. We show that a high-complexity blend of two individual β-glucans from Saccharomyces cerevisiae possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules. By activating multiple receptors and downstream signaling pathways, the components of this β-glucan preparation are able to act synergistically, causing a robust secondary response upon an unrelated challenge. In in-vivo murine models of melanoma and bladder cell carcinoma, pre-treatment of mice with the β-glucan preparation led to a significant reduction in tumor growth. These insights may aid in the development of future therapies based on β-glucan structures that induce an effective trained immunity response.</p
    corecore