20 research outputs found

    Creating Isolated Liquid Compartments Using Photopatterned Obstacles in Microfluidics

    Get PDF
    We propose a method to trap liquid (both oil and water) in a microchannel by sequentially injecting oil and water (or vice versa) over photopatterned obstacles with controlled wetting properties. We present a simple geometrical model to understand the liquid-entrapment process and predict the evolution of the water/oil interface over an obstacle. Our analysis provides an analytic solution that can successfully predict useful properties such as angular position of pinch-off and the amount of captured liquid. We show that we are able to obtain a liquid bridge over two circular obstacles, and we are also able to predict the condition for the formation of a bridge. We further demonstrate the effect of the obstacle shape and how a sudden change in gradient results in larger liquid entrapment. We also demonstrate the ability to entrap isolated liquid chambers for parallel experimentation

    Sensing and inactivation of Bacillus anthracis Sterne by polymer–bromine complexes

    Get PDF
    We report on the performance of brominated poly(N-vinylpyrrolidone) (PVP-Br), brominated poly(ethylene glycol) (PEG-Br), and brominated poly(allylamine-co-4-aminopyridine) (PAAm-APy-Br) for their ability to decontaminate Bacillus anthracis Sterne spores in solution while also allowing for the sensing of the spores. The polymers were brominated by bromine using carbon tetrachloride or potassium tribromide as solvents, with bromine loadings ranging from 1.6 to 4.2 mEq/g of polymer. B. anthracis Sterne spores were exposed to increasing concentrations of brominated polymers for 5 min, while the kinetics of the sporicidal activity was assessed. All brominated polymers demonstrated spore log-kills of 8 within 5 min of exposure at 12 mg/mL aqueous polymer concentration. Sensing of spores was accomplished by measuring the release of dipicolinic acid (DPA) from the spore using time-resolved fluorescence. Parent, non-brominated polymers did not cause any release of DPA and the spores remained viable. In contrast, spores exposed to the brominated polymers were inactivated and the release of DPA was observed within minutes of exposure. Also, this release of DPA continued for a long time after spore inactivation as in a controlled release process. The DPA release was more pronounced for spores exposed to brominated PVP and brominated PEG-8000 compared to brominated PAAm-APy and brominated PEG-400. Using time-resolved fluorescence, we detected as low as 2500 B. anthracis spores, with PEG-8000 being more sensitive to low spore numbers. Our results suggest that the brominated polymers may be used effectively as decontamination agents against bacterial spores while also providing the sensing capability.Defense Threat Reduction Agency (DTRA

    Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation

    Get PDF
    Gupta, Ankur et al. “Controlling and Predicting Droplet Size of Nanoemulsions: Scaling Relations with Experimental Validation.” Soft Matter 12.5 (2016): 1452–1458.Eni S.p.A

    Nanoemulsions: formation, properties and applications

    Get PDF
    Nanoemulsions are kinetically stable liquid-in-liquid dispersions with droplet sizes on the order of 100 nm. Their small size leads to useful properties such as high surface area per unit volume, robust stability, optically transparent appearance, and tunable rheology. Nanoemulsions are finding application in diverse areas such as drug delivery, food, cosmetics, pharmaceuticals, and material synthesis. Additionally, they serve as model systems to understand nanoscale colloidal dispersions. High and low energy methods are used to prepare nanoemulsions, including high pressure homogenization, ultrasonication, phase inversion temperature and emulsion inversion point, as well as recently developed approaches such as bubble bursting method. In this review article, we summarize the major methods to prepare nanoemulsions, theories to predict droplet size, physical conditions and chemical additives which affect droplet stability, and recent applications.Eni S.p.A

    Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water

    Get PDF
    The removal of highly toxic, ultra-dilute contaminants of concern has been a primary challenge for clean water technologies. Chromium and arsenic are among the most prevalent heavy metal pollutants in urban and agricultural waters, with current separation processes having severe limitations due to lack of molecular selectivity. Here, we report redox-active metallopolymer electrodes for the selective electrochemical removal of chromium and arsenic. An uptake greater than 100 mg Cr/g adsorbent can be achieved electrochemically, with a 99% reversible working capacity, with the bound chromium ions released in the less harmful trivalent form. Furthermore, we study the metallopolymer response during electrochemical modulation by in situ transmission electron microscopy. The underlying mechanisms for molecular selectivity are investigated through electronic structure calculations, indicating a strong charge transfer to the heavy metal oxyanions. Finally, chromium and arsenic are remediated efficiently at concentrations as low as 100 ppb, in the presence of over 200-fold excess competing salts.National Science Foundation (U.S.) (ECCS-1610806

    Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities

    Get PDF
    We report the systematic structural manipulation of turbostratic electrospun carbon nanofibers (ECNFs) using a microwave-assisted oxidation process, which is extremely rapid and highly controllable and affords controlled variation of the capacitive energy storage capabilities of ECNFs. We find a nonmonotonic relationship between the oxidation degree of ECNFs and their electrocapacitive performance and present a detailed study on the electronic and crystalline structures of ECNFs to elucidate the origin of this nonmonotonic relation. The ECNFs with an optimized oxidation level show ultrahigh capacitances at high operation rates, exceptional cycling performance, and an excellent energy–power combination. We have identified three key factors required for optimal energy storage performance for turbostratic carbon systems: (i) an abundance of surface oxides, (ii) microstructural integrity, and (iii) an appropriate interlayer spacing

    Crystallization of Calcium Sulphate During Phosphoric Acid Production: Modeling Particle Shape and Size Distribution

    Get PDF
    A key unit operation in the production of phosphoric acid is the filtration needed to separate calcium sulphate dihydrate (CaSO₄·2H₂O, gypsum) crystals from an acid slurry. The filtration efficiency depends on the shape and size distribution (SSD) of the gypsum crystals produced from the upstream reactive crystallization. This article describes the construction of a first-principles model and computationally efficient numerical solver for the prediction of SSD during the reactive crystallization of gypsum while taking non-ideal phase equilibria and the effects of impurities (i.e., metal ions) into account. A population balance model couples the impurity compositions in the feed streams to the SSD for given process conditions, with the independent dimensions of the crystals being their length and width. Such a population balance model with two independent dimensions is able to represent rod-like crystals with varying aspect ratios (length/width). The compositions of all species in solution and the supersaturation driving force for crystal nucleation and growth are described using a mixed solvent electrolyte model that accounts for long-range, short-range, and ionic interactions. OLI software for computing the compositions is integrated with a Matlab implementation of the population balance model that is solved using the method of characteristics, which transforms the partial differential equations of the population balance model into a system of ordinary differential equations. This simulation method does not exhibit the numerical diffusion or dispersion common in other simulation methods, while being more computationally efficient. The crystal nucleation and growth rates are measured in a series of mixed-suspension mixed-product-removal experiments of various acid concentration, temperature, and impurity levels. A variety of models for the effects of impurities on the growth rates along the width and length dimensions are compared in terms of their ability to describe experimental observations. Keywords phosphoric acid particle shape crystallization population balance models gypsu

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Faradaic electro-swing reactive adsorption for CO2 capture

    No full text
    Carbon capture is one of the foremost methods for curtailing greenhouse gas emissions. Incumbent technologies are inherently inefficient due to thermal energy losses, large footprint, or degradation of sorbent material. We report a solid-state faradaic electro-swing reactive adsorption system comprising an electrochemical cell that exploits the reductive addition of CO2 to quinones for carbon capture. The reported device is compact and flexible, obviates the need for ancillary equipment, and eliminates the parasitic energy losses by using electrochemically activated redox carriers. An electrochemical cell with a polyanthraquinone–carbon nanotube composite negative electrode captures CO2 upon charging via the carboxylation of reduced quinones, and releases CO2 upon discharge. The cell architecture maximizes the surface area exposed to gas, allowing for ease of stacking of the cells in a parallel passage contactor bed. We demonstrate the capture of CO2 both in a sealed chamber and in an adsorption bed from inlet streams of CO2 concentrations as low as 0.6% (6000 ppm) and up to 10%, at a constant CO2 capacity with a faradaic efficiency of >90%, and a work of 40–90 kJ per mole of CO2 captured, with great durability of electrochemical cells showing <30% loss of capacity after 7000 cylces
    corecore