261 research outputs found

    Metabolically active volumes automatic delineation methodologies in PET imaging: review and perspectives

    No full text
    International audiencePET imaging is now considered a gold standard tool in clinical oncology, especially for diagnosis purposes. More recent applications such as therapy follow up or tumor targeting in radiotherapy require a fast, accurate and robust metabolically active tumor volumes on emission images, which cannot be obtained through manual contouring. This clinical need has sprung a large number of methodological developments regarding automatic methods to defined tumor volumes on PET images. This paper reviews most of the methodologies that have been recently proposed and discusses their framework and methodological and/or clinical validation. Perspectives regarding the future work to be done are also suggested

    Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.: 18F-FDG PET and CT tumor delineation in NSCLC

    Get PDF
    International audienceUNLABELLED: The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. METHODS: Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. RESULTS: All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. CONCLUSION: Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred

    Comparison Between 18F-FDG PET Image-Derived Indices for Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer.

    Get PDF
    International audienceThe goal of this study was to determine the best predictive factor among image-derived parameters extracted from sequential F-FDG PET scans for early tumor response prediction after 2 cycles of neoadjuvant chemotherapy in breast cancer. METHODS: 51 breast cancer patients were included. Responder and nonresponder status was determined by histopathologic examination according to the tumor and node Sataloff scale. PET indices (maximum and mean standardized uptake value [SUV], metabolically active tumor volume, and total lesion glycolysis [TLG]), at baseline and their variation (Δ) after 2 cycles of neoadjuvant chemotherapy were extracted from the PET images. Their predictive value was investigated using Mann-Whitney U tests and receiver-operating-characteristic analysis. Subgroup analysis was also performed by considering estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative, triple-negative, and HER2-positive tumors separately. The impact of partial-volume correction was also investigated using an iterative deconvolution algorithm. RESULTS: There were 24 pathologic nonresponders and 27 responders. None of the baseline PET parameters was correlated with response. After 2 neoadjuvant chemotherapy cycles, the reduction of each parameter was significantly associated with response, the best prediction of response being obtained with ΔTLG (96% sensitivity, 92% specificity, and 94% accuracy), which had a significantly higher area under the curve (0.91 vs. 0.82, P = 0.01) than did ΔSUV (63% sensitivity, 92% specificity, and 77% accuracy). Subgroup analysis confirmed a significantly higher accuracy for ΔTLG than ΔSUV for ER-positive/HER-negative but not for triple-negative and HER2-positive tumors. Partial-volume correction had no impact on the predictive value of any of the PET image-derived parameters despite significant changes in their absolute values. CONCLUSION: Our results suggest that the reduction after 2 neoadjuvant chemotherapy cycles of the metabolically active volume of primary tumor measurements such as ΔTLG predicts histopathologic tumor response with higher accuracy than does ΔSUV measurements, especially for ER-positive/HER2-negative breast cancer. These results should be confirmed in a larger group of patients as they may potentially increase the clinical value and efficiency of F-FDG PET for early prediction of response to neoadjuvant chemotherapy

    Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge.

    Get PDF
    By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction), in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and compare modern image analysis methods to best extract and leverage this information automatically. We present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially expanded compared to the first edition, by providing a larger population (adding patients from a new clinical center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival (PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers, each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC) and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation, 4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first time, the prediction of outcome was also addressed and the best methods reached relatively good performance (C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies in HNC

    Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

    Get PDF
    Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte-Carlo method. Simulations were carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers towards 180º domains with very flat domain interfaces mainly due to the competition between this term and the dipole-dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. Some recent experimental observations in ferroelectric-antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces

    Intégrer des ressources numériques dans les collections

    Get PDF
    Cet ouvrage s’inscrit dans la continuité de plusieurs autres volumes de la collection afin de proposer aux bibliothécaires et documentalistes des clés pour aborder et gérer efficacement la documentation dématérialisée : une douzaine d’auteurs s’attachent à présenter les modalités de sélection, d’acquisition, de signalement, d’évaluation et de conservation propres à ces ressources en développant en filigrane un questionnement sur la fonction de la bibliothèque. Prenant appui aussi bien sur des bibliothèques de lecture publique que des universités, le plan s’organise autour de quatre parties pragmatiques et opératoires : connaître le contexte ; sélectionner et acquérir ; intégrer et sélectionner et, enfin, évaluer et conserver

    Multidimensional Poverty and Child Survival in India

    Get PDF
    Background: Though the concept of multidimensional poverty has been acknowledged cutting across the disciplines (among economists, public health professionals, development thinkers, social scientists, policy makers and international organizations) and included in the development agenda, its measurement and application are still limited. Objectives and Methodology: Using unit data from the National Family and Health Survey 3, India, this paper measures poverty in multidimensional space and examine the linkages of multidimensional poverty with child survival. The multidimensional poverty is measured in the dimension of knowledge, health and wealth and the child survival is measured with respect to infant mortality and under-five mortality. Descriptive statistics, principal component analyses and the life table methods are used in the analyses. Results: The estimates of multidimensional poverty are robust and the inter-state differentials are large. While infant mortality rate and under-five mortality rate are disproportionately higher among the abject poor compared to the nonpoor, there are no significant differences in child survival among educationally, economically and health poor at the national level. State pattern in child survival among the education, economical and health poor are mixed. Conclusion: Use of multidimensional poverty measures help to identify abject poor who are unlikely to come out of poverty trap. The child survival is significantly lower among abject poor compared to moderate poor and non-poor. We urge t

    FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort.: FDG-PET heterogeneity and volume

    No full text
    International audienceIntra-tumor uptake heterogeneity in 18F-FDG PET has been associated with patient treatment outcomes in several cancer types. Textural features (TF) analysis is a promising method for its quantification. An open issue associated with the use of TF for the quantification of intratumoral heterogeneity concerns its added contribution and dependence on the metabolically active tumor volume (MATV), which has already been shown as a significant predictive and prognostic parameter. Our objective was to address this question using a larger cohort of patients covering different cancer types.METHODS:A single database of 555 pre-treatment 18F-FDG PET images (breast, cervix, esophageal, head & neck and lung cancer tumors) was assembled. Four robust and reproducible TF-derived parameters were considered. The issues associated with the calculation of TF using co-occurrence matrices (such as the quantization and spatial directionality relationships) were also investigated. The relationship between these features and MATV, as well as among the features themselves was investigated using Spearman rank coefficients, for different volume ranges. The complementary prognostic value of MATV and TF was assessed through multivariate Cox analysis in the esophageal and NSCLC cohorts.RESULTS:A large range of MATVs was included in the population considered (3-415 cm3, mean = 35, median = 19, SD=50). The correlation between MATV and TF varied greatly depending on the MATVs, with reduced correlation for increasing volumes. These findings were reproducible across the different cancer types. The quantization and the calculation method both had an impact on the correlation. Volume and heterogeneity were independent prognostic factors (P = 0.0053 and 0.0093 respectively) along with stage (P = 0.002) in NSCLC, but in the esophageal tumors, volume and heterogeneity had less complementary value due to smaller overall volumes.CONCLUSION:Our results suggest that heterogeneity quantification and volume may provide valuable complementary information for volumes above 10cm3, although the complementary information increases substantially with larger volumes

    Intimate partner violence and infant morbidity: evidence of an association from a population-based study in eastern Uganda in 2003

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although recent studies suggest that there is an association between intimate partner violence and child mortality, the underlying mechanisms are still unknown. It is against this background that as a secondary objective, we set out to explore whether an association exists between intimate partner violence and illness in infants.</p> <p>Methods</p> <p>We conducted a population based household survey in Mbale, eastern Uganda in 2003. Participants were 457 women (with 457 infants) who consented to participate in the study. We measured socio-demographics of women and occurrence of intimate partner violence. We measured socio-demographics, immunization, nutritional status, and illness in the previous two weeks of the children.</p> <p>Results</p> <p>The mean age of the women was 25 years (SD 5.7) while the mean age of the infants was 6 months (SD 3.5). The prevalence of lifetime intimate partner violence was 54% (95% CI 48%–60%). During the previous two weeks, 50% (95% CI 50%–54%) of the children had illness (fever, diarrhoea, cough and fast breathing). Lifetime intimate partner violence was associated with infant illness (OR 1.8, 95% CI 1.2–2.8) and diarrhoea (OR 2.0, 95% CI 1.2–3.4).</p> <p>Conclusion</p> <p>Our findings suggest that infant illnesses (fever, diarrhoea, cough and fast breathing) are associated with intimate partner violence, and provide insights into previous reports that have shown an association between intimate partner violence and child mortality, suggesting possible underlying mechanisms. Our findings also highlight the importance of intimate partner violence on the health of children, and the need for further research in this area.</p
    corecore