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Abstract 

Phase transition and field driven hysteresis evolution of a two-dimensional Ising 

grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long 

range dipolar interactions were simulated by a Monte-Carlo method. Simulations were 

carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components 

comprising the structures with an electrostatic-like coupling term were also studied. An 

electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric 

layers towards 180º domains with very flat domain interfaces mainly due to the 

competition between this term and the dipole-dipole interaction. The antiferroelectric 

layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of 

an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic 

domains at the expense of the domain wall energy. The long-range interactions become 

significant near the interfaces. For high periodicity structures with several interfaces, the 

interlayer long-range interactions substantially impact the configuration of the 

ferroelectric layers while the antiferroelectric layers remain quite stable unless these 

layers are near the Neel temperature. In systems investigated with several interfaces, the 

hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be 

expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. 

Some recent experimental observations in ferroelectric-antiferroelectric multilayers are 
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discussed where we conclude that the different electrical properties of bilayers and 

superlattices are not only due to strain effects alone but also long-range interactions. The 

latter manifests itself particularly in superlattices where layers are periodically exposed to 

each other at the interfaces. 
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1. Introduction 

Hysteresis behavior of ferroelectric (FE) and antiferroelectric (AFE) crystals can 

be a footprint in evaluating the stability of the spontaneous dipoles and their possible 

configuration. A significant number of studies are published focusing on the phase 

stabilities of AFEs and AFE coupling at interfaces of multicomponent systems through 

the hysteresis shapes they exhibit as well as coexistence of the FE and AFE phases in a 

single composition [1-12]. In a practical sense, multilayers of FE and AFE components 

such as PbZr(1-x)TixO3–PbZrO3 (PZT-PZ) or PbTiO3-PbZrO3 (PT-PZ)  have attracted 

interest as these structures were shown to exhibit high dielectric constants for critical 

compositional frequencies when in multilayer form [13-17]. So, multilayers comprising 

FE and AFE components are gripping both from application and scientific point of views. 

Theoretical studies that try to predict the hysteresis dynamics via adjustable 

parameters in the Hamiltonian also focus on the exchange coefficients and calculation of 

the dielectric anomalies for a set of chosen parameters and dipole arrangements [4-7, 9, 

10]. Switching behavior and domain contributions to dynamics of ferroelectric films and 

superlattices have already been the focus of several research groups, highlighting the 

importance of interfaces [18-22]. Prior to recent interest in ferroelectric films, studies 

have been extensively carried out for magnetic systems by applying the 2D and 3D Ising 

Model to these materials [23, 24], including attempts to select realistic interaction 

parameters for a Ising-type Hamiltonian extracted from experimental data [25]. 

Transverse Ising Model (TIM) [26]
 
has been employed to some types of antiferroelectrics 

where an internal transverse field is present due to the distribution probabiliy of a proton 

between neighboring lattice sites. Moreover, a strong antiparallel exchange between 
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sideways neighbors also produces well-defined antiferroelectric loops in the nearest 

neighbor 2D Ising limit [27], similar to FE domains or layers interacting with one another 

through a negative exchange coefficient at the domain interfaces [8]. With increasing 

temperature towards the Neel point, the nearly linear neck connecting the two 

ferroelectric parts of the loop gradually disappears. Before total destruction of the 

antiparallel configuration of the dipoles, loops reminiscent of a FE appear which again 

gradually disappear with increasing temperature-induced fluctuations. In theory, 

adjustable interaction parameters of a Hamiltonian could surely be shown to give rise to 

many types of hysteresis and phase transition behaviors to comment on real experimental 

observations. These studies are vital to assess and understand the internal energetics and 

competing mechansims in systems undergoing order-disorder transitions, especially when 

departure from equilibrium is enforced due to the presence of an externally varying field. 

In spite of the interest in such systems, phase stabilities of AFEs sandwiched between 

layers of FE in the form of multilayers, have not been investigated in depth despite 

experimental studies reporting interesting results. 

In this article, we carried out Monte-Carlo (MC) simulations on a 2D grid where 

we defined short-range and long-range interactions between lattice sites. The evolution of 

the grid was studied for cases of a pure FE, pure AFE, a bilayer and a superlattice 

consisting of equal fractions of FE and AFE both with temperature and under applied 

field. Cooling runs under zero external field yielded information on the equilibrium order 

state of the systems as a function of temperature, emphasizing the great impact of the 

long-range dipolar interactions. By adjusting the strength of the short-range-to-long-range 

interactions and electrostatic-like coupling, various different configurations of the grid 



 5 

were obtained yielding various hysteresis loops under a triangular applied field with fixed 

frequency in all cases. During the hysteresis simulations of the bilayer and the 

superlattice, the effect of an electrostatic-like coupling between the layers that each spin 

feels was also studied. We include this coupling term with the reservation that it is not 

exactly corresponding to the behavior of real dipoles but is rather an energy term that has 

to be minimized in the simulations. The system’s strong tendency to minimize this term 

gives rise to very similar results obtained within the scope of the Landau-Ginzburg-

Devonshire (LGD) theory that employs the electrostatic coupling in the presence of space 

dependent polarization variations. The depolarization effect either due to a dead layer 

near the film-electrode interfaces or due to imperfect screening of charges created by the 

spontaneous dipoles in the ferroelectric have been shown to be capable of suppressing 

ferroelectricity in very thin layers [28, 29]. In multilayers, the presence of such a term 

could then favor the FE layers to exist in a polydomain state where a similar effect was 

accounted for in our 2D hypothetical grids. With the inclusion of a depolarization-like 

effect, up-spins and down-spins with nearly equal fractions, reminiscent of 180º domains 

in real FEs, form in an alternating columnar fashion. Such a situation, of course, occurs 

when the strength of the depolarization term exceeds a critical value where it becomes 

energetically favorable to form strip-like domains at the expense of the domain-wall 

energy. The terms in the dipole-dipole (d-d) interaction that favor parallel alignment of 

spins with long-range coupling become a dominant parameter both in equilibrium 

configuration and switching under applied signal especially at low temperatures. For 

nearly equally stable FE and AFE layers, that is their equilibrium order is destroyed at 

approximately the same temperature, superlattices comprised of such layers with several 
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interfaces have FE-like hysteresis loops while the bilayers display hysteresis loops that 

can be deconvoluted to a seperate FE and an AFE component. We demonstrate that, in 

addition to different strain states of layers in superlattices, interfaces are just as important 

as regions exposing the components to one another where even a short range penetration 

of one type of order of a component into the other can alter the equilibrium and dynamic 

phenomena. 

2. Theory and Methodology 

A 2D system consisting of sites that are strongly correlated to each other can be 

expressed within the 2D Ising limit as: 

∑∑ ±± −−=
2/

1

1

2/

1

1

N

jjSW

N

iiHTSR SSJSSJH    (1) 

where only nearest neighbor exchange is considered, subscript “SR” in SRH  stands for 

“short range” and HTJ  is the exchange coefficient for ferroelectric order between the sites 

along y-axis (head-to-tail) with 2/1±=iS  being the local spin of the site i and SWJ  is the 

sideways exchange coefficient between neighbor spins, imposing an antiparallel state 

when negative; N represents the total number of sites in the grid. SRH  is sufficient to 

induce a long-range order in a 2D system with nearest neighbor exchange below the 

characteristic Curie point that is determined by the randomization effect of temperature 

on spin states. The Curie point of the system is basically the kT value, with k being the 

Boltzmann constant and T temperature, above which probability of having aligned spin 

couples is around 50 %, meaning disorder in the system within the current algorithm. In 

an ensemble of local spins (and dipoles), we should also incorporate the dipole-dipole (d-

d) interaction that has a long-range nature: 
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where A is the interaction constant and 22 )()( jıji yyxxr −+−=  is the distance 

between sites i and j ( ji ≠ , 1±− ii rr and 1±− jj rr  is taken as unity), n is a unit vector 

directed along the line joining the two sites considered, ji SS ⋅  and nS ji ⋅)(  are the dot 

products. Note that a parallel configuration is favored for head-to-tail spins while a full 

antiparallel state has lower energy only for sideway dipoles. The ji SS ⋅ term in (2) can 

only be minimized by antiparallel alignment of dipoles for two degrees of freedom of 

spins in this work. We plot the magnitude of the θ2cos  arising from the ))((3 nSnS ji ⋅⋅  

term considering a central dipole interacting with others in a 2D grid had all dipoles been 

pointing up as given in Figure 1a. The regions of zero (0) value for θ2cos  are the regions 

where antiparallel alignment, dictated by the ji SS ⋅  of (2) term, is dominant while one (1) 

favors parallel alignment. For a clear representation, Figure 1b provides a map of favored 

interaction type as a function of position with respect to a dipole at the center of the map.  

As we will discuss in the forthcoming section, the information contained in Figure 1a and 

1b will prove very useful in clarifying the trends in the systems considered. For values of 

A comparable to HTJ  and SWJ  in magnitude, (2) has a great impact on the properties and 

equilibrium states of the considered systems owing to its long-range influence. The 

electrostatic energy of an applied field is added to the system in the form: 

∑−=
N

iAppiEL SEEE
1

0 )(2µ     (3) 

with AppE  being the externally applied field, and 
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SE β=0      (4) 

β  is a coefficient that establishes the strength of the electrostatic-like coupling, S  is the 

average spin of the entire system and iµ  being the dipole magnitude of site i. The term 

(4) stands for the overall electrostatic-like coupling similar to the terms used in the LGD 

theory of ferroelectrics. In the latter, the term scaling with Pπ4 (in Gaussian 

units, 0/εP in SI units, P is total polarization of the system) stabilizes 180º electrical 

domains [28-30] to compensate for the internal depolarization field induced by the 

variation of the order parameter near interfaces and due to imperfectly screening 

electrodes. One must keep in mind that the depolarization term in a ferroelectric is a 

function of sample shape and depends on the thickness for the case of a film that is 

infinite in the plane. In our study, we arbitrarily adjust this term to demonstrate the effect 

of electrostatic coupling between the layers due to the different intrinsic order the FE and 

AFE layers tend to attain. The total energy of the 2D grid becomes: 

ELDDSR EHHH ++=     (5) 

Defining a periodic structure such as a bilayer or a superlattice will clearly be through 

assigning alternating values of 2,1

HTJ  and 2,1

SWJ  as demonstrated schematically in Figure 2, 

with superscripts 1, 2 denoting the FE and the AFE layer, respectively. The layer 

fractions are taken equal with interface layers assumed to have 0, =SWHT JJ . 

Minimization of the H  was done with a MC approach where the system was allowed to 

evolve towards its equilibrium configuration at a given temperature, T. A grid size of 70 

x 70 was constructed with free boundary conditions.  Simulations were run for a variety 

of cases for comparison such as a pure FE grid, AFE, bilayers and superlattices. 
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Throughout the hysteresis simulations, the “order state” of the systems considered were 

tracked via the average spin value of the system given as 

∑=
N

iS
N

SAvr
1

1
)(     (6) 

A Markov chain was constructed with random spin-site selection for flipping, and 

the kinetic Glauber formula [31] was used to decide if sign change of a spin at a chosen 

site would be accepted in the form of a probability, P: 

 

    

        (7)     

 

where MCτ  is a time step taken as unity. H∆  is the energy difference between two 

consecutive configurations of the system that differ by only one single flip. Average spin 

vs. applied field hysteresis loops of the structures were obtained by applying a triangular 

electric field (amplitude varying from zero to MAXE  where 2,14 HTMAX JE >> ) with a total of 

100 incremental steps. At each field-step the grid was allowed to relax for 20 MC steps 

(MCS) and the resulting configuration constituted the initial state for the next incremental 

applied field. One MCS represents 70
2
 flip attempts on randomly chosen sites throughout 

the grid. For a fully parallel oriented system of spins, the field at which switching will 

occur can be found from H∆  approaching to zero, meaning the sum of the first two 

terms of (5) will become equal to the last term for a given external field. This will result 

in a very high acceptance rate of spin flip attempts to reduce energy in just a few number 

of grid-sweeps until the full-parallel configuration is attained. Note that H∆  attains near 
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zero values in the AFE component when a critical field is reached followed by 

stabilization of a field-induced FE alignment. 

3. Results and Discussion 

3.1. Single component, FE and AFE grids 

Before going on to the simulations of bilayers and superlattices, we reproduced 

well-defined hysteresis loops for single component FE and AFE grids, resembling room 

temperature experiments in real systems, which we will keep as reference systems in the 

rest of the study (See Figure 3). In all our simulations, we limited the maximum distance 

between spin couples undergoing long range d-d interactions to 8 units where each unit 

represents one lattice parameter. As the strength of the dipolar interaction scales with 1/8
3
 

for sites seperated by 8=r , the term in (2) becomes negligible at larger r and it helps us 

save computational time without any sacrifice from the actual trends of the lattice grid. 

Although a very well known energy contribution to both electrically and magnetically 

ordered systems, it is rather hard to seperately judge the impact of the d-d term in 

ferroelectrics experimentally. Dipolar interaction is at its minimum value for a head-to-

tail column of spins along y-axis, stabilizing a FE arrangement. Taking into account the 

degree of freedom for spins in this study and Eqn. (2), we find that around 65% of the 

sites in the grid will have the tendency to exist in an all-parallel state at equilibirum as 

given in Figure 1b. The black area corresponds to the case of d-d energy with negative 

values for parallel spins whereas the white area has negative energy for antiparallel spins. 

We extracted this ratio by summing the term ))((3 nSnSSS jiji ⋅⋅−⋅  with normalization 

of the distance between considered sites in (2) at each point and deciding which spin 

configuration minimizes the local d-d energy simply by comparing FE and AFE 



 11 

alignment possibilities. There will thus be a competition between the d-d term in (2) and 

short range interaction that imposes an AFE phase depending on the i

SW

i

HT JJ /  ratio for a 

layer i when approaching equilibrium. Note that the AFE hysteresis in Figure 3 has 

HTJA = . 

Stability of the anti-parallel dipole configuration of an AFE within the presence of 

long-range, FE-favoring interactions remains somewhat an intriguing subject. For 

example, the very well known double-loops of PZ [32-34]
 
corroborate the fact that the 

energy-minimizing mechanism that promotes the antiparallel distortions occuring in the 

crystal must be quite dominant over the long-range d-d term [35]. This must especially be 

the circumstance when the dipoles are constrained by the lattice to a certain orientation. 

The long, linear neck in between the two field-induced loops published for PZ in several 

studies support this argument [32-34]. In a most basic view, the long-range d-d energy 

mostly favors FE-order except for immediate sideways dipoles in the system regardless 

of the degree of freedom for the dipoles at low fields. That the AFE-to-FE transition 

requires quite high fields also signals the strength of the AFE favoring mechanism. 

Looking at Figure 1, the full antiparallel alignment of dipoles is only favorable for 

sideways neighbors within the limit of (2) when 0))((3 =⋅⋅ nSnS ji  while ji SS ⋅  has its 

maximum.  

Within the scope of a Hamiltonian constructed around a short-range exchange and 

a long-range d-d term as often encountered in literature, we particularly conclude that the 

sideways exchange must be the dominant contribution in stabilization of an AFE phase. 

Field-induced transition of the loops from the AFE to the FE also occurs at fields that are 

comparable or larger than the coercive fields in most FE systems. Hence, the values 
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chosen for JSW were also adjusted accordingly where a clear double-loop AFE hysteresis 

was obtained (Figure 3). Following this short discussion, one should also consider the 

impact of strain on the stability of such systems in addition to the intrinsic terms. Nearly 

all hysteresis data published for PZ were acquired in relatively thick films, at the order of 

a few hundred nm. It is clear that such structures will undergo a misfit strain relaxation 

on misfitting substrates. Regardless of whether epitaxial or polycrystalline, very distinct 

AFE loops were observed for PZ, indicating that the AFE phase can be stabilized in thin 

films with varying crystal orientations, a situation that one would not strongly anticipate. 

In a recent report published by our group, such clear AFE loops tend to disappear when 

epitaxially grown PZ is relatively thin and is in the form of layers sandwiched between 

PZT 80/20 layers [17]. For the extreme case of a many-layer superlattice consisting of 

nearly equal fractions of PZT80/20 and PZ, no trace of an AFE behavior was observed, 

the possible reasons for what are discussed in sections 3.2 and 3.3. In our simulations we 

qualitatively observed the same trend in the comparison of the hysteresis of bilayers and 

superlattices without altering any of the exchange and d-d coefficients.  

3.2. Phase transition behavior of the bilayer and superlattice grids  

Using the systems whose hysteresis curves are given in Figure 3 as components 

comprising the layers, we created the bilayer and the superlattice grids whose schematic 

were already given in Figure 2. To shed light on the phase transition behavior and the 

Curie points of the bilayer and the superlattice with  211

HTHTSW JJJ ==  and 22 2 HTSW JJ −=  

with kTJJ HTHT 8, 21 =  and 2,1

HTJA = , we carried out cooling runs. We cooled both the 

superlattice and the bilayer slowly starting from 2.5 kT/JHT to 0 kT/JHT where each system 

was kept at chosen temperature intervals for 200 MCS and the same procedure was 
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repeated 4 times for statistical integrity. We essentially noted that such a relaxation 

allowance at each temperature is sufficient as the systems reach a level-off and do not 

evolve into further configurations especially at low kT/JHT. This picture, of course, 

changes with increasing kT/JHT where thermal fluctuations cause a large variation of 

average spin values as expected. The results of the cooling runs are plotted in Figure 4. A 

very interesting behavior is displayed where the superlattice has a strong FE order at very 

low temperatures that drops with a quite steep slope towards net zero spin value. The 

bilayer, on the other hand, apparently has a much higher Curie point.  

To check whether the superlattice indeed undergoes a phase transition or if the 

apparent disappearance of the net spin value is a consequence of the spin clustering, we 

give the configurations of the grid at the kT/JHT where net spin is zero in both systems, 

denoted by 1 and 2 in Figure 4. Following the relaxation of both systems at 1500 K, we 

note that the net average spin of the superlattice system approaches zero not due to a 

phase transition (total destruction of the order with thermal fluctuations) but due to the 

domain-like formations in the FE layers. It is quite straightforward to explain this 

behavior as 22 2 HTSW JJ −=  and that kTAJJ HTHT ≅,, 21 , meaning that thermal fluctuations 

are dominating and the all-parallel alignment in the FE layers is somewhat destroyed 

under the influence of the more stable anti-parallel configuration in the AFE layers. 

However, just the opposite trend occurs at low temperatures where the long range FE 

ordering prevails in the entire system despite 22 2 HTSW JJ −= . The antiparallel spin 

arrangement in the AFE layer of the bilayer sustains stability at low temperatures for 

22 2 HTSW JJ −=  and 2,1

HTJA = . Values of 2,1

HTJA >  can still permit an antiparallel 

arrangement in the AFE of the bilayer due to the fact that about 35 % of spins will exist 
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in an antiparallel state owing to the form of (2) and θcos in the second dot product of (2).  

The latter are true for the bilayer as there is just one interface with the FE component 

leading to less influence of the FE-AFE interaction through the d-d energy.  

One also must note that these are generalized discussions and that in real samples, 

the layers are often under different strains with probably quite different phase transition 

behavior. In this article, we show that a phase transition in a multilayer system may not 

be strictly or only related to possible different strain states of the layers. For the sake of 

demonstration, we give the cooling curves of a superlattice and a bilayer excluding the 

long-range interactions in Figure 5. The absence of the long-range dipolar term 

significantly impacts the Curie point of the two systems, and the interfaces in the 

superlattice give rise to a decrease in the net spin as these regions were considered 

“transition regions ( 02,1 =HTJ , 02,1 =SWJ )” in between the layers. Still, we should add here 

that the interface susceptibilities remain somewhat insignificant compared to the d-d 

interaction unless the number of interfaces approach that of the individual layers.  

3.3. Hysteresis loops of the superlattice and the bilayer 

In principle, the cooling curves already provide the evidence that at low 

temperatures away from the Curie point, the FE arrangement is dominant. To see how the 

switching of grids occurs under applied field, we give the hysteresis of the bilayer and the 

superlattice at 125.0/ =HTJkT  in Figure 6. The FE layer has =HTJ SWJ  and the AFE is 

characterized by HTSW JJ 2−=  in 6a and the same constants and applied signal frequency 

and amplitude were used to get the plots in Figure 3 were employed. The two structures 

behave very differently where the bilayer exhibits both FE and AFE switching while both 

tend to merge into one loop with decreasing 2

SWJ (in AFE layer). Clearly, the magnitude 
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of |JSW| determines the stability of the AFE layer. The single component AFE hysteresis 

loop for JSW =- JHT is given in Figure 6d. There is still a very clear double loop with a 

smaller AFE-to-FE transition field compared to the one given in Figure 3. The loop for a 

bilayer and a superlattice using JHT=JSW for the FE and JSW=- JHT for the AFE is in 

Figure 6b. These loops evident that near all-parallel alignment is taking place, with the 

exception of some AFE clusters still remaining in the AFE part of the bilayer that switch 

to all-parallel alignment at a normalized field of about 0.3. In the AFE model of Kittel 

and Cross [36-38], the variation of JSW identically corresponds to the adjustments of the 

term R in ba PRP  where ba PP  is the product of the sublattice polarizations, which is 

determining the strength of the “antiparallel remnance” of spins until an electrostatic 

energy overcomes this barrier to induce FE alignment via an externally applied field.  

Overall, it is clear that the field-induced AFE-to-FE transition in the sandwiched 

AFE layers occurs at lower applied fields than in a pure AFE structure, a consequence of 

the ))((3 nSnS ji ⋅⋅  in (2) term acting to impose all-parallel alignment for angles higher 

than 6/π  (with respect to the horizontal axis) between interacting spin couples near the 

interfaces. Also note that β  is taken as zero until now and cases where 0>β  will be 

discussed in the forthcoming section. In literature, very wide range of hysteresis shapes 

have often been reproduced in theoretical studies but mostly by varying the Hamiltonian 

parameters for bilayers and multilayers. We here demonstrate that structural or 

compositional periodicity is just as important, particularly when long-range interactions 

are taken into account. Therefore, through more exposure of the layers to each other at 

the interfaces, different phase transition behavior can be exhibited, excluding any strain-

related arguments or varying the Hamiltonian parameters. This is in good qualitative 
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agreement with experiments where FE-like behavior has often been encountered in real 

multilayer structures with high periodicity. For bilayers, the regions that are far from the 

interface tend to behave rather independent, reflected in the extensions of the hysteresis 

loops but this happens at low fields due to the assistance provided by the already 

switched spins, especially those in the FE layer. Not exactly knowing if the very same 

mechanism is the reason, we had observed loops of AFE character in epitaxial FE-AFE 

bilayers reported in one of our recent articles [17].  

For a complementary view and in order to display the behavior of the systems in 

weak d-d interaction energy, we provide the hysteresis runs of the bilayer and the 

superlattice with 2,15.0 HTJA =  in Figure 7. With decreasing A, the layers start switching 

independently and it turns out that the superlattice and the bilayer have identical loops 

when A=0.5 (Figure 7). It is very fortunate that this picture is in total contradiction with 

the one provided in Figure 6a especially where the superlattice switches with 

significantly merged double loops at both applied field polarities. The components in the 

bilayer of Figure 6b, however, switch independently in a relative sense but not as in a 

manner profound as in Figure 7.  

3.4. Effect of a depolarization-like field (β>0) 

 Throughout our simulations, the superlattice has a significantly larger remanence 

at zero applied field than the bilayer but one additional remark we would like to 

emphasize is the effect of an electrostatic-like coupling on the hysteresis loops of FE-

AFE layers. To account for a depolarization-field effect, we assumed an arbitrary 

2,15 HTJ=β . Inclusion of this term into the hysteresis simulations leads to slimmer and 

tilted hysteresis loops as it reduces the effective field that the spins are exposed to in 
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addition to the domain formation to minimize the related term Sβ   when 0EEApp <  in 

(3) (See Figure 8). Thus, switching occurs gradually in a range of applied field values, i. 

e., in a rather diffuse fashion. Another prominent effect is the loss of the remnance near 

zero-field as 180º domains start to form in the FE layer in the form of spin clusters with 

flat interfaces (at low enough temperatures). For very large β , there is no hysteresis but 

just a linear response for all systems without any apparent “remnant order parameter” 

where the applied field only changes the up-spin domain/down-spin domain fraction. A 

similar result was recently reported using the time-dependent Landau-Ginzburg equation 

for BaTiO3 thin films with thick dead layers (corresponding to strong depolarization 

field) by Ahluwalia and Srolovitz [39]. 

 Interestingly, the superlattice grid hysteresis in Figure 8 has a qualitatively very 

similar shape to a recently reported result for an epitaxial bilayer 
17

. As mentioned earlier, 

the superlattice grids in this study have a high FE-AFE interface-to-volume ratio where 

the components feel each other’s presence. Such a scenario could also be true when one 

thinks of coexistence of the FE and AFE phases in the same layer and the hysteresis will 

exhibit both characteristics [40]. Considering that the bilayers are relatively more relaxed 

than the superlattices and the presence of just one interface [14-17], it is possible to 

expect that the components of the bilayer will display a relatively independent behavior. 

The effect of varying strain in the layers in this study can be incorporated by choosing 

appropriate coefficients in the Hamiltonian and we would like to state that no double 

loops are of consequence when a strong FE (high Curie point) and a weak AFE (low Neel 

point) are thought to comprise the grid in the presence of d-d interactions. This is not so 
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when d-d interactions are excluded in the simulations, thereby indicating the large impact 

of the d-d term in (2) in addition to any possible strain arguments. 

3.5. Zero-field near-equilibirum configuration for β>0 

In order to examine the conditions stabilizing a FE or AFE type ordering under 

electrostatic-like coupling, we also carried out zero-applied field runs where we observed 

the evolution of the grid under the influence of β  and A while 125.0/ =HTJkT  is fixed. 

Each run had 1000 MCS. In Figure 9, to emphasize the contribution of the long-range 

dipolar energy, we show the case when 2,1

HTJA =  in 9a and 9b, kTJJ HTHT 8, 21 =  and 

kTJ SW 81 = , kTJ SW 162 −=  in all. For 0=β , the spins remain in an all-parallel state due 

to the short range exchange and dipole-dipole interaction, which turns out to be dominant 

when the ))((3 nSnS ji ⋅⋅  term in Eqn. (2) attains values for angles equal or larger than 

6/π  in the cross product (See Figure 1a).   

Figures 9b and 9c reveal the configurations for β =10JFE S that is sufficient to 

force the FE component of the grids to evolve into spin-up and spin-down domains. In 

the presence of 2,1

HTJA =   in (2), the FE layer transforms into a periodic one having fine 

laths with flat interfaces. The flat domain walls are a consequence of the competition 

where the sign of the sideways exchange and the part of the dipole-dipole interaction are 

effective with respect to FE ordering, coming mainly from the ))((3 nSnS ji ⋅⋅  term that 

is zero when jiSn ,⊥ , leaving (2) effective with the ji SS ⋅  product. The domain size 

depends on the strength of the dipolar interaction term where the sideways anti-parallel 

alignment and head-to-tail parallel alignment compete. In the absence of any long-range 

contribution in Figure 9c ( 0=A ), the cost of the 180º domain formation is only a slightly 
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perturbed interface, hence it is not surprising to observe that the FE layer splits into two 

equal halves of up-spins and down-spins to minimize the term in (4) after 1000 MCS. We 

would like to remind here that a needle-like FE crystal does not suffer from a 

depolarization field due to the small area where the polarization vector pointing along the 

needle terminates. Such a geometric effect is not accounted for in this study, i. e., we 

externally introduce this term that the systems try to minimize. 

The superlattice splits into domains for the same values of the coefficients used in 

the bilayer runs but at much smaller β  as provided in Figure 10. As much as there is the 

imposition for parallel alignment of the FE layers on the AFE ones, there is the AFE 

influence on the FE layers and vice versa near the interfaces. Therefore, the interfaces act 

as nucleation centers for the domains in the FE even at relatively small values of β . This 

could also be a qualitative explanation for the slimmer hysteresis loops often observed for 

multilayers in experiments where the structure switches much easier than bulk at lower 

coercive fields. The influence of layer periodicity has also been investigated for FE-PE 

multilayer structures by Stephanovic et al. [41] using an analytical method to 

demonstrate the influence of FE layers on each other through the electrostatic effects 

without any strain-related parameters. They conclude that above a critical layer 

frequency, the ferroelectric layers start interacting with one another and the entire 

structure has a minimally varying polarization profile within each domain.  

4. Conclusions 

 We carried out Monte-Carlo simulations where the phase transition behavior, 

hysteresis characteristics and equilibrium configurations of FE, AFE and multilayers 

consisting of both were investigated. The long-range interactions have a substantial 
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influence on the phase transition behavior and configurational order of the system 

employed in this study. For the case of superlattices with several interfaces, quite 

different hysteresis behaviors were displayed when a stable FE and a stable AFE were 

thought to form the structure. The AFE characteristics tend to totally disappear in 

hysteresis loops of superlattices while the bilayer can still exhibit independently 

switching AFE clusters characterized by extensions of the hysteresis loops. Nevertheless, 

the multilayer and the bilayer loops are much slimmer, implying that lower applied fields 

suffice to switch the systems compared to the loops obtained from the single component 

FE and AFE grids, in good qualitative agreement with real experimental observations. 

The electrostatic-like coupling does not induce an AFE-to-FE transition in the AFE layer 

as the FE layer splits into clusters of spins with flat interfaces similar to 180º domains 

extensively treated in numerous studies particularly using the LGD formalism.  

In short, using hypothetical order-disorder systems, we analyzed the influence of 

long-range dipolar interactions for various behavior of multilayers that often yield FE-

like loops for FE-AFE structures with high component periodicity often observed in 

experiments. There can certainly be other influences such as the coexistence of FE and 

AFE phases in a strained AFE layer and these formations have to be examined under the 

knowledge of individual strain states and relaxation behavior of the layers.  
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Figure Captions: 

Figure 1. (a) The value of θ2cos  in the dot product nS ji ⋅)(  as a function of position for 

a pair of interacting dipoles one of which is fixed as the central dipole in reference (bold 

gray) and (b) Map of parallel and antiparallel alignment of dipoles interacting with a 

central reference dipole for spin-up/spin-down degree of freedom to reduce dipole-dipole 

interaction energy. Both plots are for 34x34 sites corresponding to ±17 distance units 

along x-axis and y-axis around the central reference dipole (x=0,y=0).  

 

Figure 2. The schematic of the superlattice and the bilayer grids used in this study (black: 

AFE, white: FE, gray: interfaces). 

 

Figure 3. (a) The reference loops used in the study of the bilayers and the superlattices, 

kTJA HT 8==  in both the FE and the AFE, kTJJ HTSW 162 22 −=−= .  

 

Figure 4. Average spin as a function of temperature (cooling curves). Points 1 and 2 

denoted on the dashed vertical line at 0.85 kT/JHT are the configurations of the bilayer and 

the superlattice after 200 MCS, given under the plot. The dashed curves are guides for the 

eye. kTJA HT 8==  in this figure. 

 

Figure 5. Average spin as a function of temperature (cooling curves) in the same 

temperature range when 0=A . The dashed curves are guides for the eye. Note that the 

bilayer and the superlattice have nearly the same Curie point. 
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Figure 6. (a) - (c) Various hysteresis loops of a bilayer (shaded) and a superlattice (solid 

black line) for the given Hamiltonian coefficients obtained using a triangular field signal 

at fixed frequency. Note that the loops tend to merge into a single one in the superlattice 

with decreasing SWJ . A = JHT in all plots. (d) The single component AFE loop 

when 11

HTSW JJ = , 22

HTSW JJ −=  (solid black line). The AFE loop previously provided in 

Figure 3 is given for comparison (shaded). 

 

Figure 7. Hysteresis loop when kTJJ SWHT 812,1 == , 22 2 HTSW JJ −=  2,15.0 HTJA =   

 

Figure 8. Hysteresis loop when kTJJA SWHT 812,1 ===  and 22

HTSW JJ −=  with 2,15 HTJ=β  

(electrostatic-like coupling). 

 

Figure 9. The bilayer configurations after 1000 MCS for (a) 0=β , kTJA HT 82,1 ==  (b) 

100=β , kTJA HT 82,1 ==  and (c) 100=β , 0=A  (No d-d interaction).  

 

Figure 10. Superlattice configuration for kTJJ SWHT 812,1 == , 22 2 HTSW JJ −= , 2,1

HTJA =  and 

15 HTJ=β  after 1000 MCS. 
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