19 research outputs found

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess

    Efeitos da escarificação na qualidade física de um latossolo vermelho distroférrico após treze anos de semeadura direta Effects of chiseling on physical quality of a dystroferric red latosol after thirteen years of no-tillage

    No full text
    O objetivo deste trabalho foi avaliar as alterações na qualidade física de um Latossolo Vermelho distroférrico provocadas pela escarificação, após 13 anos de semeadura direta. O experimento constituiu-se de dois tratamentos: escarificação do solo a 0,30 m de profundidade (SDE) e testemunha mantendo a semeadura direta (SD). Amostras de solo, com estrutura não deformada, foram coletadas nas profundidades de 0-0,15 m e 0,15-0,30 m, a partir das quais foram determinados a curva de retenção de água, a curva de resistência do solo à penetração, a densidade do solo e o "Intervalo Ótimo de Tensão da Água no Solo" (IOP). Os resultados mostraram que, na profundidade de 0-0,15 m, a escarificação promoveu modificações na porosidade do solo, mantendo condições adequadas de aeração em tensões matriciais menores do que 0,01 MPa. Por outro lado, no solo escarificado, constatou-se a maior ocorrência de limitações pela resistência do solo à penetração em tensões menores do que 1,5 MPa. Para a camada de 0,15-0,30 m, no tratamento SDE, a resistência do solo à penetração foi o limite superior do IOP. Os resultados deste estudo sugerem que, neste solo e sob esta condição de manejo, não é necessária a escarificação.<br>The objective of this study was to evaluate alterations in the physical soil quality of a Dystroferric Red Latosol (Typic Haplorthox) caused by chiseling, after thirteen years of no-tillage. The experiment consisted of two management systems: soil chiseling down to a 0.30 m depth (NTC) and no-tillage (NT). Undisturbed soil samples were collected at depths of 0-0.15 m and 0.15-0.30 m, and the soil water retention curve, the soil resistance to penetration curve, the soil bulk density, and the "Least Limiting Water Potential" (LLWP) were determined. The results showed that the chiseling caused modifications in soil porosity in the 0-0.15 m layer, maintaining appropriate aeration conditions in water matric potentials under 0.01 MPa. On the other hand, the strongest limitations by soil penetration resistance in matric potentials under 1.5 MPa were verified in the NTC soil management. In the 0.15-0.30 m soil layer under the NTC treatment, the soil penetration resistance was the upper limit of the LLWP. The results of the study indicate that under the present management condition, chiseling is not necessary in this soil
    corecore