5,216 research outputs found

    Leaching Losses of N, P and K from Grazed Legume Based Swards: Some Preliminary Results

    Get PDF
    There is increasing interest in sustainable agricultural systems because of environmental concerns. Animal production which utilises mixed grass and legume swards could be an effective measure in increasing the efficiency of nutrient utilisation, and investigation into different legume species is necessary. Leaching losses of N, P and K from 3 legume species under grazing by sheep were measured using Teflon-coated suction cups. The experiment took place on the UK site of the EU-funded, multi-site experiment – LEGGRAZE

    Early respiratory viral infections in infants with cystic fibrosis

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF

    The host galaxy of the z=2.4 radio-loud AGN MRC 0406-244 as seen by HST

    Full text link
    We present multicolour Hubble Space Telescope images of the powerful z=2.4 radio galaxy MRC 0406-244 and model its complex morphology with several components including a host galaxy, a point source, and extended nebular and continuum emission. We suggest that the main progenitor of this radio galaxy was a normal, albeit massive (M ~10^{11} solar masses), star-forming galaxy. The optical stellar disc of the host galaxy is smooth and well described by a S\'ersic profile, which argues against a recent major merger, however there is also a point-source component which may be the remnant of a minor merger. The half-light radius of the optical disc is constrained to lie in the range 3.5 to 8.2kpc, which is of similar size to coeval star forming galaxies. Biconical shells of nebular emission and UV-bright continuum extend out from the host galaxy along the radio jet axis, which is also the minor axis of the host galaxy. The origin of the continuum emission is uncertain, but it is most likely to be young stars or dust-scattered light from the AGN, and it is possible that stars are forming from this material at a rate of 200^{+1420}_{-110} solar masses per year.Comment: Accepted for publication in MNRA

    A z = 2.5 protocluster associated with the radio galaxy MRC 2104-242: star formation and differing mass functions in dense environments

    Get PDF
    We present results from a narrow-band survey of the field around the high-redshift radio galaxy MRC 2104−242. We have selected Hα emitters in a 7 arcmin2 field and compared the measured number density with that of a field sample at similar redshift. We find that MRC 2104−242 lies in an overdensity of galaxies that is 8.0 ± 0.8 times the average density of a blank field, suggesting it resides in a large-scale structure that may eventually collapse to form a massive cluster. We find that there is more dust obscured star formation in the protocluster galaxies than in similarly selected control field galaxies and there is tentative evidence of a higher fraction of starbursting galaxies in the denser environment. However, on average we do not find a difference between the star formation rate (SFR)–mass relations of the protocluster and field galaxies and so conclude that the SFR of these galaxies at z ∼ 2.5 is governed predominantly by galaxy mass and not the host environment. We also find that the stellar mass distribution of the protocluster galaxies is skewed towards higher masses and there is a significant lack of galaxies at M 1010.5M_) galaxies, the density of the protocluster field increases to ∼55 times the control field density

    Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms

    Get PDF
    Organosulfate species have recently gained attention for their potentially significant contribution to secondary organic aerosol (SOA); however, their temporal behavior in the ambient atmosphere has not been probed in detail. In this work, organosulfates derived from isoprene were observed in single particle mass spectra in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Real-time measurements revealed that the highest organosulfate concentrations occurred at night under a stable boundary layer, suggesting gas-to-particle partitioning and subsequent aqueous-phase processing of the organic precursors played key roles in their formation. Further analysis of the diurnal profile suggests possible contributions from multiple production mechanisms, including acid-catalysis and radical-initiation. This work highlights the potential for additional SOA formation pathways in biogenically influenced urban regions to enhance the organic aerosol burden

    Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors

    Get PDF
    After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog-chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high-resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low-volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel-specific VOC emission inventory that was scaled by burn-specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas-phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation-driven evaporation during up to 2 hr of equivalent atmospheric oxidation

    Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry - Part 1: Single Particle Atmospheric Observations in Atlanta

    Get PDF
    Organosulfate species have recently been identified as a potentially significant class of secondary organic aerosol (SOA) species, yet little is known about their behavior in the atmosphere. In this work, organosulfates were observed in individual ambient aerosols using single particle mass spectrometry in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Organosulfates derived from biogenically produced isoprene were detected as deprotonated molecular ions in negative-ion spectra measured by aerosol time-of-flight mass spectrometry; comparison to high-resolution mass spectrometry data obtained from filter samples corroborated the peak assignments. The size-resolved chemical composition measurements revealed that organosulfate species were mostly detected in submicrometer aerosols and across a range of aerosols from different sources, consistent with secondary reaction products. Detection of organosulfates in a large fraction of negative-ion ambient spectra − ca. 90−95% during ANARChE and ~65% of submicrometer particles in AMIGAS − highlights the ubiquity of organosulfate species in the ambient aerosols of biogenically influenced urban environments

    Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment

    Get PDF
    Using angle-resolved photoelectron spectroscopy and ab-initio GW calculations, we unambiguously show that the widely investigated three-dimensional topological insulator Bi2Se3 has a direct band gap at the Gamma point. Experimentally, this is shown by a three-dimensional band mapping in large fractions of the Brillouin zone. Theoretically, we demonstrate that the valence band maximum is located at the Brillouin center only if many-body effects are included in the calculation. Otherwise, it is found in a high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure
    corecore