392 research outputs found

    Measurements of optical properties of atmospheric aerosols in Northern Finland

    Get PDF
    International audienceThree years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm?1 with an average of 7.1±8.6 Mm?1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4?5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas

    Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw

    Get PDF
    The white rot fungus Phlebia radiata 79 (ATCC 64658) produces lignin peroxidase (LiP), manganese peroxidase (MnP), glyoxal oxidase (GLOX), and laccase in the commonly used glucose low-nitrogen liquid medium. However, the enzymes which this fungus utilizes for selective removal of lignin during degradation of different lignocellulosic substrates have not been studied before. Multiple forms of LiP, MnP, GLOX, and laccase were purified from P. radiata culture extracts obtained after solid-state fermentation of wheat straw. However, the patterns of extracellular lignin-modifying enzymes studied were different from those of the enzymes usually found in liquid cultures of P. radiata. Three LiP isoforms were purified. The major LiP isoform from solid-state cultivation was LiP2. LiP3, which has usually been described as the major isoenzyme in liquid cultures, was not expressed during straw fermentation. New MnP isoforms have been detected in addition to the previously reported MnPs. GLOX was secreted in rather high amounts simultaneously with LiP during the first 2 weeks of growth. GLOX purified from P. radiata showed multiple forms, with pIs ranging from 4.0 to 4.6 and with a molecular mass of ca. 68 kDa

    Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition

    Full text link
    The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5–10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72825/1/j.1462-2920.2007.01250.x.pd

    Cross helicity of interplanetary coronal mass ejections at 1 au

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) contain magnetic field and velocity fluctuations across a wide range of scales. These fluctuations may be interpreted as Alfvenic wave packets propagating parallel or antiparallel to the background magnetic field, with the difference in power between counterpropagating fluxes quantified by the cross helicity. We have determined the cross helicity of inertial range fluctuations at 10(-3) to 10(-2) Hz in 226 ICME flux ropes and 176 ICME sheaths observed by the Wind spacecraft at 1 au during 1995-2015. The flux ropes and sheaths had mean, normalized cross helicities of 0.18 and 0.24, respectively, with positive values here indicating net antisunward fluxes. While still tipped towards the antisunward direction on average, fluxes in ICMEs tend to be more balanced than in the solar wind at 1 au, where the mean cross helicity is larger. Superposed epoch profiles show cross helicity falling sharply in the sheath and reaching a minimum inside the flux rope near the leading edge. More imbalanced, solar wind-like cross helicity was found towards the trailing edge and laterally further from the rope axis. The dependence of cross helicity on flux rope orientation and the presence of an upstream shock are considered. Potential origins of the low cross helicity in ICMEs at 1 au include balanced driving of the closed-loop flux rope at the Sun and ICME-solar wind interactions in interplanetary space. We propose that low cross helicity of fluctuations is added to the standard list of ICME signatures.Peer reviewe

    Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

    Get PDF
    This is the final version. Available from European Geosciences Union via the DOI in this record. Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements

    Interpreting eddy covariance data from heterogeneous Siberian tundra : land-cover-specific methane fluxes and spatial representativeness

    Get PDF
    The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements in Tiksi, a tundra site in northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very-high-spatial-resolution satellite imagery and field surveys, and quantified the sensor location bias. We found that methane (CH4) fluxes varied strongly with wind direction (-0.09 to 0.59 mu gCH(4)m(-2) s(-1) on average) during summer 2014, reflecting the distribution of different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH4 flux, we developed a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra patches in locations with topography-enhanced wetness acted as strong sources (1.0 mu gCH(4) m(-2) s(-1) during the peak emission period), while mineral soils were significant sinks (-0.13 mu gCH(4) m(-2) s(-1)). To assess the representativeness of measurements, we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close to the CH4 balance upscaled to an area of 6.3 km(2), with a location bias of 14 %. We recommend that EC site descriptions in a heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other site characteristics.Peer reviewe

    An empirical investigation of the emergent issues around OER adoption in Sub-Saharan Africa

    Get PDF
    In the past few years, Africa has joined the rest of the world as an active participant in the Open Educational Resource (OER) movement with a number of home-grown and externally driven initiatives. These have the potential to make an immense contribution to teaching and learning in Sub-Saharan Africa (SSA). However, certain barriers prevent full participation. This paper reports on qualitative research that sought to investigate SSA's readiness to adopt OERs. This study involves three case studies based in higher education institutions involved in OER projects and located in Kenya, Uganda and South Africa. Contrary to the popular belief, findings indicate that low technological levels in Africa do not necessarily impede the adoption of such educational technologies; the real challenges facing the readiness to adopt OERs appear to be related to socio-economic, cultural, institutional and national issues. This paper argues for a complete mind shift in how people perceive OERs. It also proposes raising awareness of OERs at all levels, involving institutions and government, versioning OERs for the African context and conducting more research on OER adoption

    The Discursive Denial of Racism by Finnish Populist Radical Right Politicians Accused of Anti-Muslim Hate-Speech

    Get PDF
    This chapter explores Finnish populist radical right politicians’ discursive denials of racism against Muslims following the 2015 European “refugee crisis”. The critical discursive psychological analysis of the politicians’ Facebook accounts identifies four ways in which racism was denied: first, through constructing the statements as mere displays of undisputable facts and common-sense; second, through personal narratives and ontological gerrymandering that acted as ‘proof’ of the politician’s non-racist disposition; third, through transferring the discussion from issues about race to concern matters of cultural threats; and, fourth, through reversing racism to the politicians’ political antagonists. The analyses show that in their discursive denial of racist hate-speech against Muslims, the Finnish politicians relied more on cultural arguments than welfare-protectionist ones. That is, the denials were primarily warranted through nostalgic references to Finnish national identity, people and values, and rhetorical promises that the hope of saving these rests on resisting the cultural threat posed by Islam.Peer reviewe

    Digital photography for assessing the link between vegetation phenology and CO2 exchange in two contrasting northern ecosystems

    Get PDF
    Digital repeat photography has become a widely used tool for assessing the annual course of vegetation phenology of different ecosystems. By using the green chromatic coordinate (GCC) as a greenness measure, we examined the feasibility of digital repeat photography for assessing the vegetation phenology in two contrasting high-latitude ecosystems. Ecosystem-atmosphere CO2 fluxes and various meteorological variables were continuously measured at both sites. While the seasonal changes in GCC were more obvious for the ecosystem that is dominated by annual plants (open wetland), clear seasonal patterns were also observed for the evergreen ecosystem (coniferous forest). Daily and seasonal time periods with sufficient solar radiation were determined based on images of a grey reference plate. The variability in cloudiness had only a minor effect on GCC, and GCC did not depend on the sun angle and direction either. The daily GCC of wetland correlated well with the daily photosynthetic capacity estimated from the CO2 flux measurements. At the forest site, the correlation was high in 2015 but there were discernible deviations during the course of the summer of 2014. The year-to-year differences were most likely generated by meteorological conditions, with higher temperatures coinciding with higher GCCs. In addition to depicting the seasonal course of ecosystem functioning, GCC was shown to respond to environmental changes on a timescale of days. Overall, monitoring of phenological variations with digital images provides a powerful tool for linking gross primary production and phenology.Peer reviewe
    • 

    corecore