111 research outputs found

    Rates and predictors of hypoglycaemia in 27 585 people from 24 countries with insulin-treated type 1 and type 2 diabetes : the global HAT study

    Get PDF
    Aims: To determine the global extent of hypoglycaemia experienced by patients with diabetes using insulin, as there is a lack of data on the prevalence of hypoglycaemia in developed and developing countries. Methods: This non-interventional, multicentre, 6-month retrospective and 4-week prospective study using self-assessment questionnaire and patient diaries included 27 585 patients, aged >= 18 years, with type 1 diabetes (T1D; n = 8022) or type 2 diabetes (T2D; n = 19 563) treated with insulin for > 12 months, at 2004 sites in 24 countries worldwide. The primary endpoint was the proportion of patients experiencing at least one hypoglycaemic event during the observational period. Results: During the prospective period, 83.0% of patients with T1D and 46.5% of patients with T2D reported hypoglycaemia. Rates of any, nocturnal and severe hypoglycaemia were 73.3 [95% confidence interval (CI) 72.6-74.0], 11.3 (95% CI 11.0-11.6) and 4.9 (95% CI 4.7-5.1) events/patient-year for T1D and 19.3 (95% CI 19.1-19.6), 3.7 (95% CI 3.6-3.8) and 2.5 events/patient-year (95% CI 2.4-2.5) for T2D, respectively. The highest rates of any hypoglycaemia were observed in Latin America for T1D and Russia for T2D. Glycated haemoglobin level was not a significant predictor of hypoglycaemia. Conclusions: We report hypoglycaemia rates in a global population, including those in countries without previous data. Overall hypoglycaemia rates were high, with large variations between geographical regions. Further investigation into these differences may help to optimize therapy and reduce the risk of hypoglycaemia.Peer reviewe

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    A Multi-disciplinary Commentary on Preclinical Research to investigate Vascular Contributions to Dementia

    Get PDF
    Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder
    corecore