232 research outputs found

    ゼブラフィッシュの栄養生理及び運動生理の研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    燐脂質脂肪肝の成因および病態解明に関する研究

    Get PDF
    金沢大学医学部附属病院研究課題/領域番号:X46210------7140, 研究期間(年度): 1971出典:研究課題「燐脂質脂肪肝の成因および病態解明に関する研究」課題番号 X46210------7140(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-X46210------7140/)を加工して作

    Evaluation of Important Treatment Parameters in Supraphysiological Thermal Therapy of Human Liver Cancer HepG2 Cells

    Get PDF
    This study was aimed at simulating the effect of various treatment parameters like heating rate (HR), peak temperature (PT) and hold/total treatment time on the viability of human liver cancer HepG2 cells subjected to different thermal therapy conditions. The problem was approached by investigating the injury kinetics obtained using experimentally measured viability of the cells, heated to temperatures of 50–70°C for 0–9 min at HRs of 100, 200, 300 and 525°C min(−1). An empirical expression obtained between the activation energy (E) and HR was extended to obtain the E values over a broad range of HRs from 5 to 600°C min(−1) that mimic the actual conditions encountered in a typical thermal therapy protocol. Further, the effect of the HR (5–600°C min(−1)) and PT (50–85°C) on the cell survival was studied over a range of hold times. A significant drop in survival from 90% to 0% with the simultaneous increase in HR and PT was observed as the hold time increased from 0 to 5 min. For complete cell death, the hold time increased with the increase in the HR for a given PT, while the total time showed presence of minima for 60, 65 and 70°C at HRs of 50, 100 and 200°C min(−1), respectively

    Obese zebrafish: A small fish for a major human health condition

    Get PDF
    Obesity is becoming a silent worldwide epidemic, with a steady increase in both adults and children. To date, even though several drugs have been licensed for long‐term obesity treatment, none of them are yet used in routine clinical practice. So far the only successful intervention has been behavioral therapy. A suitable and economic experimental model mimicking the human condition would therefore be extremely useful to evaluate preventive measures and novel treatments. Zebrafish are emerging as an important model system to study obesity and related metabolic disease. Remarkable similarities have been reported in lipid metabolism and the adipogenic pathway between zebrafish and mammals. Moreover, the zebrafish possesses a number of features—the relative inexpensiveness of animal husbandry, its optical transparency and the ability to produce a large number of offspring at low cost—that make it ideal for large‐scale screening and for testing drugs and intervention. In this review, we summarize recent progress in using zebrafish as a model system to study obesity and obesity‐related metabolic disorders. We describe several zebrafish models (in both larvae and adult animals) that develop obesity and non‐alcoholic fatty liver disease (NAFLD) using different approaches, including gene manipulation, diet manipulation and modification of microbiota composition. For these models, we have outlined the specific aspects related to obesity and its development and we have summarized their advantages and limitations

    Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting

    Get PDF
    Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation
    corecore