502 research outputs found
Pointwise estimates for the Bergman kernel of the weighted Fock space
We prove upper pointwise estimates for the Bergman kernel of the weighted
Fock space of entire functions in where is a
subharmonic function with a doubling measure. We derive estimates
for the canonical solution operator to the inhomogeneous Cauchy-Riemann
equation and we characterize the compactness of this operator in terms of
Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays
We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of the input beam while independent of nonlinearity
On the growth of the Bergman kernel near an infinite-type point
We study diagonal estimates for the Bergman kernels of certain model domains
in near boundary points that are of infinite type. To do so, we
need a mild structural condition on the defining functions of interest that
facilitates optimal upper and lower bounds. This is a mild condition; unlike
earlier studies of this sort, we are able to make estimates for non-convex
pseudoconvex domains as well. This condition quantifies, in some sense, how
flat a domain is at an infinite-type boundary point. In this scheme of
quantification, the model domains considered below range -- roughly speaking --
from being ``mildly infinite-type'' to very flat at the infinite-type points.Comment: Significant revisions made; simpler estimates; very mild
strengthening of the hypotheses on Theorem 1.2 to get much stronger
conclusions than in ver.1. To appear in Math. An
Concept of an ionizing time-domain matter-wave interferometer
We discuss the concept of an all-optical and ionizing matter-wave
interferometer in the time domain. The proposed setup aims at testing the wave
nature of highly massive clusters and molecules, and it will enable new
precision experiments with a broad class of atoms, using the same laser system.
The propagating particles are illuminated by three pulses of a standing
ultraviolet laser beam, which detaches an electron via efficient single
photon-absorption. Optical gratings may have periods as small as 80 nm, leading
to wide diffraction angles for cold atoms and to compact setups even for very
massive clusters. Accounting for the coherent and the incoherent parts of the
particle-light interaction, we show that the combined effect of phase and
amplitude modulation of the matter waves gives rise to a Talbot-Lau-like
interference effect with a characteristic dependence on the pulse delay time.Comment: 25 pages, 5 figure
Appraising Kirchhoff approximation theory for the scattering of elastic shear waves by randomly rough defects
Rapid and accurate methods, based on the Kirchhoff approximation (KA), are developed to evaluate the scattering of shear waves by rough defects and quantify the accuracy of this approximation. Defect roughness has a strong effect on the reflection of ultrasound, and every rough defect has a different surface, so standard methods of assessing the sensitivity of inspection based on smooth defects are necessarily limited. Accurately resolving rough cracks in non-destructive evaluation (NDE) inspections often requires shear waves since they have higher sensitivity to surface roughness than longitudinal waves. KA models are attractive, since they are rapid to deploy, however they are an approximation and it is important to determine the range of validity for the scattering of ultrasonic shear waves; this range is found here. Good agreement between KA and high fidelity finite element simulations is obtained for a range of incident/scattering angles, and the limits of validity for KA are found to be much stricter than for longitudinal wave incidence; as the correlation length of rough surfaces is reduced to the order of the incident shear wavelength, a combination of multiple scattering and surface wave mode conversion leads to KA predictions diverging from those of the true diffuse scattered fields
Elastic shear wave scattering by randomly rough surfaces
Characterizing cracks within elastic media forms an important aspect of ultrasonic non-destructive evaluation (NDE) where techniques such as time-of-flight diffraction and pulse-echo are often used with the presumption of scattering from smooth, straight cracks. However, cracks are rarely straight, or smooth, and recent attention has focussed upon rough surface scattering primarily by longitudinal wave excitations. We provide a comprehensive study of scattering by incident shear waves, thus far neglected in models of rough surface scattering despite their practical importance in the detection of surface-breaking defects, using modelling, simulation and supporting experiments. The scattering of incident shear waves introduces challenges, largely absent in the longitudinal case, related to surface wave mode-conversion, the reduced range of validity of the Kirchhoff approximation (KA) as compared with longitudinal incidence, and an increased importance of correlation length. The expected reflection from a rough defect is predicted using a statistical model from which, given the angle of incidence and two statistical parameters, the expected reflection amplitude is obtained instantaneously for any scattering angle and length of defect. If the ratio of correlation length to defect length exceeds a critical value, which we determine, there is an explicit dependence of the scattering results on correlation length, and we modify the modelling to find this dependence. The modelling is cross-correlated against Monte Carlo simulations of many different surface profiles, sharing the same statistical parameter values, using numerical simulation via ray models (KA) and finite element (FE) methods accelerated with a GPU implementation. Additionally we provide experimental validations that demonstrate the accuracy of our predictions
Coordinated and Interoperable Seismological Data and Product Services in Europe: the EPOS Thematic Core Service for Seismology
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders withi
Two-Particle Interference with Double Twin-Atom Beams
We demonstrate a source for correlated pairs of atoms characterized by two
opposite momenta and two spatial modes forming a Bell state only involving
external degrees of freedom. We characterize the state of the emitted atom
beams by observing strong number squeezing up to -10 dB in the correlated
two-particle modes of emission. We furthermore demonstrate genuine two-particle
interference in the normalized second-order correlation function
relative to the emitted atoms.Comment: 6 pages, 3 figure
Colloquium: Quantum interference of clusters and molecules
We review recent progress and future prospects of matter wave interferometry
with complex organic molecules and inorganic clusters. Three variants of a
near-field interference effect, based on diffraction by material
nanostructures, at optical phase gratings, and at ionizing laser fields are
considered. We discuss the theoretical concepts underlying these experiments
and the experimental challenges. This includes optimizing interferometer
designs as well as understanding the role of decoherence. The high sensitivity
of matter wave interference experiments to external perturbations is
demonstrated to be useful for accurately measuring internal properties of
delocalized nanoparticles. We conclude by investigating the prospects for
probing the quantum superposition principle in the limit of high particle mass
and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio
- …