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We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical

waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of

Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of

truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that

unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of

the input beam while independent of nonlinearity.
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The coherent transport of nonlinear waves is essential
in many phenomena in nature. In contrast to linear waves,
the physics becomes complex when wave interactions start
to play a role, making laboratory studies difficult. As such,
many of the fundamental physical effects of nonlinear
waves have been first studied in optics, where the advent
of the laser as an intense coherent light source gave rise to
the field of nonlinear optics. The recent experimental devel-
opments in Bose-Einstein condensates (BECs) opened the
way for many analogous experiments with intense sources
of coherent matter waves. Correspondingly, many effects
earlier observed in nonlinear optics have been later found to
occur in nonlinear atom optics, including four-wave mixing
of matter waves [1] and matter-wave solitons [2].

A few years ago Anker et al. [3] reported the experi-
mental observation of nonlinear self-trapping of Bose-
Einstein-condensed atoms in stationary periodic potentials.
This trapping effect due to interaction between condensed
atoms is manifested as a change from the diffusive regime,
characterized by an expansion of the condensate, to the
nonlinearity dominated self-trapping regime, where the
initial expansion stops and the width of a matter-wave
packet remains finite. This observation abrogates a seem-
ingly obvious analogy between nonlinear optics and
matter-wave physics, because this type of nonlinearity-
induced self-trapping in the presence of repulsive interac-
tion has never been observed in optics.

In this Letter, we report on the first observation of non-
linear self-trapping of broad beams with zero transverse
momentum in an array of defocusing optical waveguides.
Our results not only provide an optical analogue of the self-
trapping effect of Bose-Einstein-condensed atoms [3], but
also reveal the important unique features of these localized
states. In particular, we demonstrate that unlike conven-
tional gap solitons known in defocusing photonic lattices
[4] and BECs [5], the spatial extent of such self-trapped

states is controlled by the width of the input excitation
rather than by the input power.
While a detailed intuitive explanation of the self-

trapping effect in terms of wave tunneling in a single
Josephson junction has been provided in Ref. [3], this des-
cription was found incomplete as it did not account for
the periodic nature of the trapping potential. Subsequent
theoretical works [6–8] have extended the description of
the wave localization linking it to the Bloch modes in the
system. However, this subsequent description remained
untested experimentally, largely due to the challenges
in BEC experiments. By using an optical system, here we
investigate the nature of the self-trapped state to a degree
not attainable in the original BEC system. As such, we
demonstrate experimentally two new fundamental effects:
(i) Dependence of the width of the localized state on the
input excitation, and (ii) independence of the localization
on the strength of the nonlinearity (beam power, or equiv-
alently number of atoms in the BEC system), once above
a critical value. This is due to the existence of a class of
robust nonlinear states with arbitrary width which act as
attractors in the system. Loss of excess power (or equiv-
alently atoms) is able to occur through the edges of the
localized state [7], an effect unnoticed in the earlier experi-
ments due to the deep lattice used. We reveal that the
unique properties of the self-trapped states make them
both highly robust and easily controllable.
We begin with the theoretical description of the beam

localization, and model beam propagation through our
lithium niobate (LiNbO3) waveguide array by the non-
linear Schrödinger equation with a periodic potential and
Kerr-type nonlinearity,

i
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@z
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@x2
þ ��nðxÞE� �jEj2E ¼ 0: (1)
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Here D ¼ zs�=ð4�n0x2sÞ, � ¼ 2�zs=�. The transverse
coordinate x and longitudinal coordinate z are normalized
in units of xs ¼ 1 �m and zs ¼ 1 mm, respectively. While
the complete description of the defocusing photovoltaic
nonlinearity of LiNbO3 involves complex charge diffusion
processes, our simplified model captures well the generic
features of the nonlinear beam evolution, as was success-
fully demonstrated for gap solitons in Ref. [9]. The linear
refractive index of the substrate material is n0 ¼ 2:234
at � ¼ 532 nm, leading to a diffraction coefficient of
D ¼ 18:95. The linear refractive index change �nðxÞ of
the waveguides is taken as �nðxÞ ¼ �

P
n exp½�ðx�

ndÞ2=w2�, where � defines the modulation depth [4].
We take the waveguide width and spacing to be w ¼
7 �m and d ¼ 14 �m respectively, matching the experi-
mental realization of the array. The modulation depth is set
at � ¼ 0:0003 to match the theoretical and experimental
linear output profiles. This is a shallow depth compared to
the experimental regime of Ref. [3]. We find however that
the general effects presented in this work occur over a wide
range of depths (� ¼ 0:0002–0:005 have been considered).

We examine the stationary solutions of the system
Eq. (1) using the ansatz Eðx; zÞ ¼ �ðxÞ expði�zÞ, where
� is the propagation constant (related to the negative value
of the chemical potential in BEC physics). In the linear
limit the stationary wave solutions take the form of Bloch
waves, �n;kðxÞ ¼ UðxÞ expðikxÞ where n denotes the band

number and k the Bloch wave vector. The spectrum of
these linear waves is divided into bands separated by gaps
as shown in Fig. 1(a). In the presence of nonlinearity,
stationary solutions may exist inside the linear transmis-
sion gaps in the form of either periodic nonlinear Bloch
waves [10] or spatially localized states known as gap
solitons [11]. A third type of state has recently been
revealed as a bridge between these two classes of solution,
the so-called truncated nonlinear Bloch waves [6]. Such a
type of localization occurs when the propagation constant
of the Bloch wave is shifted into the gap, passing through
the entire linear band, as shown with an arrow in Fig. 1(a).
This crossing happens when a Bloch wave with zero trans-
verse momentum is excited at the top of the first band and
the defocusing nonlinearity decreases the propagation
constant into the Bragg reflection gap. Intuitively this can

be understood as confining a truncated piece of the Bloch
wave between two Bragg reflectors, with no radiation
into other linear waves due to the presence of the linear
band gap. Unlike conventional gap solitons in defocusing
lattices, where the width of the soliton is proportional
to the soliton power [11], the width of the truncated state
is a control variable [8] in the sense that it selects the
soliton family out of an infinite number of families (for
an infinite lattice), each with a different number of occu-
pied lattice sites. The particular family excited depends
on the initial width of the incident optical beam. The
families are all distinct, bifurcating near the upper gap
edge above a critical value of the nonlinear Bloch wave
intensity [6,8]. Two particular examples of truncated
nonlinear Bloch waves of different widths are shown in
Figs. 1(b) and 1(c). Such localized states can also be
regarded as multisoliton states [12], but stable even when
composed of many gap solitons.
Next we examine the excitation of such localized

Bloch waves from a Gaussian input. Figure 2 summarizes
the numerical results on the Bloch wave excitation for
different values of the optical nonlinearity. As shown
in Fig. 2(a), for weak defocusing nonlinearity the beam
undergoes rapid spreading (faster than linear diffraction).
However as the nonlinearity is increased this spreading is
suddenly halted and the beam localizes with a width of
the order of the width of the input beam. As is evident
in a comparison of Figs. 2(b) and 2(c) the signature of the
truncated nonlinear Bloch wave is the sharp intensity drop-
off in the wings of the beam. Additional features visible in
Figs. 2(a) and 2(b) are the strong intensity modulations
occurring within the localized state. The large diffraction
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FIG. 1 (color online). (a) Band-gap spectrum. (b),(c) Examples
of two truncated nonlinear Bloch waves of different widths.
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FIG. 2 (color online). (a) Dependence of the output intensity
profile on the nonlinearity �. The beam spreading is arrested at a
critical nonlinearity, � � 0:15. (b),(c) Output beam profiles [as
marked in (a)] showing localization. (d) Variation of the output
beamwidth (defined as the width between the sharp boundaries)
with the input beam full width at half maximum (FWHM) for
different values of the nonlinear coefficient �.
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coefficient leads to long-lived nonlinear excitations of the
truncated nonlinear Bloch wave, which despite the strong
modifications of the intensity profile do not lead to decay
of the localized state. Most importantly, Fig. 2(a) shows
that above a certain threshold for the optical nonlinearity
(� � 0:15), the width of the localized state remains practi-
cally independent of the input beam power.

Interestingly, the localization occurs even when the
nonlinearity is strong enough to detune the propagation
constant of the beam into the higher band. The localization
in this latter case occurs through a rapid loss of power from
the central part of the beam into higher-order low intensity
nonlinear Bloch waves, effectively moving the propagation
constant back into the linear gap [6]. This is an important
feature not addressed in the earlier experiments using deep
lattices [3]. It is also in contrast to the long-lived nonlinear
excitations of the Bloch wave background [13].

An important feature of the generation process is that the
output beamwidth is solely defined by the input width of
the Gaussian beam, while being independent of the medi-
um’s nonlinearity. There is a linear dependence [Fig. 2(d)]
between the input and output widths, while the different
values of the nonlinearity lead to identical output beam-
widths. This can be understood as a consequence of the
requirement of a critical intensity for generation [6]. As the
nonlinearity (or beam power) is increased, the number of
excited waveguides above the critical intensity does not
change for moderate beamwidths. At larger beamwidths
the nonlinear excitations of the truncated nonlinear Bloch
state may lead to fluctuations in the measured width. This
behavior arises due to the existence of independent fami-
lies of arbitrary, but fixed, width which persist even into the
higher-order bands (where radiation occurs). Increasing
the power of such states changes the maximum intensity,
but not the width. Stable nonlinear localized states with
arbitrary fixed widths have not been seen before in any
physical context, and the existence of these nonlinear
states as stable attractors is at the heart of the new results
of this work.

Experimentally, we test the excitation of truncated
Bloch waves by employing the defocusing nonlinearity
of a LiNbO3 waveguide array (6 cm long, fabricated by
titanium indiffusion). Because of the slow nature of the
photovoltaic nonlinear response in LiNbO3, the nonlinear
index change increases slowly with time under a constant
input laser power. Since the time scale of this index change
is of the order of several minutes, the time dependence of
the beam output intensity profile can be mapped to the
dependence on the nonlinear coefficient � in Eq. (1). The
dependence �ðtÞ is a nonlinear function that saturates at
large times, however, it is a monotonic function and
uniquely defines the nonlinear index change.

We excite the array with a broad Gaussian laser beam at
532 nm. The input beam [Fig. 3(a)] is elliptically shaped by
a cylindrical lens (f ¼ 50 mm) before a (20� ) focusing
objective. We monitor the beam output intensity profile
with time for a typical input power of 1 mW and measure

the variation of the beamwidth. We note that at these laser
powers we are far from nonlinearity saturation with inten-
sity [9]. The width of the output beam (Fig. 3) is deter-
mined as the size of the area which contains 50% of the
output light power. This allows us to filter out any noise in
the diffraction pattern while maintaining a high degree of
accuracy. Error bars are calculated as the asymmetry of the
output profile with respect to the center of the input beam.
The linear diffraction in the array causes the beam to

spread out and occupy nearly twice the number of wave-
guides in comparison to the input beam [Fig. 3(b)]. Upon
increase of the nonlinearity with time, we observe an initial
defocusing of the beam [(c)] resulting from the weak
negative nonlinearity. As the exposure time increases and
the nonlinearity grows, the beam experiences gradual con-
finement and reduces its width [(d)]. The dependence of
the beamwidth with time is plotted in the main panel of
Fig. 3, where we observe that the beam localizes and the
width remains essentially constant. This localized state has
a width equal to the width of the input beam containing
75% of the power, where the remaining 25% has been
lost in radiation. Small oscillations around this value are
observed at longer times, thus matching the numerical
predictions in Fig. 2.
The appearance of spatial frequencies at the edges of the

Brillouin zone is proof that the nonlinear localization is
inside the Bragg reflection gap. This is seen in the insets of
Fig. 4 together with the intensity profiles of the beam for
linear and nonlinear propagation. We note that the intensity
scale in the Fourier spectrum plots is nonlinear due to the
nonlinear response of the camera.

FIG. 3 (color online). Output beamwidth (estimated as the
width containing 50% of the total light) vs time (nonlinear index
change). Dashed line—the width of 75% of the input beam.
(a) Input beam profile; (b) linear diffraction at the output.
(c) Nonlinear defocusing at low nonlinearity (time), (d) beam
localization at high nonlinearity. Beam power, 1 mW.
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A unique property of the optical system is the ability to
control independently the width and the power of the input
beam. This control allows us to test the new feature of
nonlinear Bloch wave localization—that it is parameter-
ized by the input beamwidth rather than by the input power.
For this purpose the input beamwidth in our experiment
is reduced using a cylindrical lens with f ¼ 75 mm. This
arrangement results in an input beam nearly half the beam-
width in Fig. 3(a). The variations of the output beamwidth
vs the increase of the nonlinear response with time is
shown in Fig. 5. Because of the strong diffraction in this
case, the output beam profile acquires more noise and we
therefore estimate the beamwidth as the area containing
30% of the total output power. Nevertheless, we can again
identify similar behavior of the output beam evolution.

First we observe the initial beam defocusing with increase
of the nonlinearity, while at longer times the beam confines
to a narrower localized state equal to the width of the input
beam containing about 65% of the total input power.
The higher loss in this localization process can be in-

tuitively understood since the narrower beam (of the same
power) used in Fig. 5 has approximately twice higher
intensity than the beam of Fig. 3. This higher intensity
pushes the propagation constant into the higher-order
bands, leading to higher losses. Most importantly, however,
the experiments shown in Figs. 3 and 5, confirm the unique
property of the truncated Bloch wave localization in com-
parison to any other nonlinear localized states known in
nature, namely, that the width of the localized state remains
independent of the nonlinearity, but can be chosen by the
width of the input excitation.
In conclusion, we have observed nonlinear self-trapping

of broad optical beams in defocusing waveguide arrays.
We have revealed that these novel types of spatially local-
ized modes can have an arbitrary width defined by the input
beam, while the width is practically independent of non-
linearity. The origin of these effects lies in the existence
of an infinite number of independent families of localized
solutions with different, but fixed, widths, which persist
into the higher-order bands of the linear band-gap struc-
ture. Our experimental results provide the first proof of
the existence of the unique properties of such states. We
believe that the robust nature of the truncated nonlinear
Bloch states and their controllable generation will encour-
age their observation in other physical systems, including
higher dimensional ones.
We thank V. Konotop, E. Ostrovskaya, J. Yang, and A.

Truscott for useful discussions, and acknowledge financial
support from the Australian Research Council.
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FIG. 4 (color online). Beam profiles at the array input (dotted
line) and output (solid line) for (a) linear (t� 0) and
(b) nonlinear (t ¼ 10 hours) propagation, corresponding to
Figs. 3(b) and 3(d). Insets: Fourier spectrum of the output beams.
�� indicate the edges of the Brillouin zone of the lattice.

FIG. 5 (color online). Output beamwidth (estimated as the
width containing 30% of the total light) vs time (nonlinear index
change). Dashed line indicates the width of 65% of the input
beam. Beam power, 1 mW.
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