178 research outputs found

    Activation-Induced Cytidine Deaminase Deficiency Causes Organ-Specific Autoimmune Disease

    Get PDF
    Activation-induced cytidine deaminase (AID) expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM) and class switch recombination (CSR). Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2) associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AIDβˆ’/βˆ’ mice spontaneously develop tertiary lymphoid organs (TLOs) in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AIDβˆ’/βˆ’ mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF) conditions. Gastric autoantigen -specific serum IgM was elevated in AIDβˆ’/βˆ’ mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells

    Structure of Protein Interaction Networks and Their Implications on Drug Design

    Get PDF
    Protein-protein interaction networks (PINs) are rich sources of information that enable the network properties of biological systems to be understood. A study of the topological and statistical properties of budding yeast and human PINs revealed that they are scale-rich and configured as highly optimized tolerance (HOT) networks that are similar to the router-level topology of the Internet. This is different from claims that such networks are scale-free and configured through simple preferential-attachment processes. Further analysis revealed that there are extensive interconnections among middle-degree nodes that form the backbone of the networks. Degree distributions of essential genes, synthetic lethal genes, synthetic sick genes, and human drug-target genes indicate that there are advantageous drug targets among nodes with middle- to low-degree nodes. Such network properties provide the rationale for combinatorial drugs that target less prominent nodes to increase synergetic efficacy and create fewer side effects

    Loss of tolerance to gut immunity protein; glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis

    Get PDF
    Abstract Glycoprotein 2[GP2] is a specific target of pancreatic autoantibodies[PAbs] in Crohn’s disease(CD) and is involved in gut innate immunity processes. Our aim was to evaluate the prevalence and prognostic potential of PAbs in primary sclerosing cholangitis(PSC). Sixty-five PSC patients were tested for PAbs by indirect immunofluorescence and compared with healthy (n = 100) and chronic liver disease controls(CLD, n = 488). Additionally, a panel of anti-microbial antibodies and secretory (s)IgA levels were measured, as markers of bacterial translocation and immune dysregulation. PAbs were more frequent in PSC(46.2%) compared to controls(healthy:0% and CLD:4.5%), [P < 0.001, for each]. Occurrence of anti-GP2 antibody was 30.8% (20/65) and was exclusively of IgA isotype. Anti-GP2 IgA positive patients had higher sIgA levels (P = 0.021). With flow-cytometry, 68.4% (13/19) of anti-GP2 IgA antibodies were bound with secretory component, suggesting an active retro-transportation of anti-GP2 from the gut lumen to the mucosa. Anti-GP2 IgA was associated with shorter transplant-free survival [PLogRank < 0.01] during the prospective follow-up (median, IQR: 87 [9–99] months) and remained an independent predictor after adjusting for Mayo risk score(HR: 4.69 [1.05–21.04], P = 0.043). These results highlight the significance of gut-liver interactions in PSC. Anti-GP2 IgA might be a valuable tool for risk stratification in PSC and considered as a potential therapeutic target

    Molecular detection (k-ras) of exfoliated tumour cells in the pelvis is a prognostic factor after resection of rectal cancer?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After total mesorectal excision (TME) for rectal cancer around 10% of patients develops local recurrences within the pelvis. One reason for recurrence might be spillage of cancer cells during surgery. This pilot study was conducted to investigate the incidence of remnant cancer cells in pelvic lavage after resection of rectal cancer. DNA from cells obtained by lavage, were analysed by denaturing capillary electrophoresis with respect to mutations in hotspots of the <it>k-ras </it>gene, which are frequently mutated in colorectal cancer.</p> <p>Results</p> <p>Of the 237 rectal cancer patients analyzed, 19 had positive lavage fluid. There was a significant survival difference (p = 0.006) between patients with <it>k-ras </it>positive and negative lavage fluid.</p> <p>Conclusion</p> <p>Patients with <it>k-ras </it>mutated cells in the lavage immediately after surgery have a reduced life expectation. Detection of exfoliated cells in the abdominal cavity may be a useful diagnostic tool to improve the staging and eventually characterize patients who may benefit from aggressive multimodal treatment of rectal cancer.</p

    Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    Get PDF
    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.Comment: 49 pages, 2 figures, 2 tables, 10 supplementary figures, 13 supplementary table

    Network Neighbors of Drug Targets Contribute to Drug Side-Effect Similarity

    Get PDF
    In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be extremely useful in the process of drug development to better understand adverse side effects

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Prion Uptake in the Gut: Identification of the First Uptake and Replication Sites

    Get PDF
    After oral exposure, prions are thought to enter Peyer's patches via M cells and accumulate first upon follicular dendritic cells (FDCs) before spreading to the nervous system. How prions are actually initially acquired from the gut lumen is not known. Using high-resolution immunofluorescence and cryo-immunogold electron microscopy, we report the trafficking of the prion protein (PrP) toward Peyer's patches of wild-type and PrP-deficient mice. PrP was transiently detectable at 1 day post feeding (dpf) within large multivesicular LAMP1-positive endosomes of enterocytes in the follicle-associated epithelium (FAE) and at much lower levels within M cells. Subsequently, PrP was detected on vesicles in the late endosomal compartments of macrophages in the subepithelial dome. At 7–21 dpf, increased PrP labelling was observed on the plasma membranes of FDCs in germinal centres of Peyer's patches from wild-type mice only, identifying FDCs as the first sites of PrP conversion and replication. Detection of PrP on extracellular vesicles displaying FAE enterocyte-derived A33 protein implied transport towards FDCs in association with FAE-derived vesicles. By 21 dpf, PrP was observed on the plasma membranes of neurons within neighbouring myenteric plexi. Together, these data identify a novel potential M cell-independent mechanism for prion transport, mediated by FAE enterocytes, which acts to initiate conversion and replication upon FDCs and subsequent infection of enteric nerves

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help
    • …
    corecore