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Abstract 

Network-based methods are playing an increasingly important role in drug design. Our main 
question in this paper was whether the efficiency of drug target proteins to spread perturbations in 
the human interactome is larger if the binding drugs have side effects, as compared to those 
which have no reported side effects. Our results showed that in general, drug targets were better 
spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side 
effects were also better spreaders of perturbations than targets of drugs having no reported side 
effects in human protein-protein interaction networks. Colorectal cancer-related proteins were 
good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an 
average spreading efficiency and had an average centrality in the human interactome. Moreover, 
the interactome-distance between drug targets and disease-related proteins was higher in diabetes 
than in colorectal cancer. Our results may help a better understanding of the network position and 
dynamics of drug targets and disease-related proteins, and may contribute to develop additional, 
network-based tests to increase the potential safety of drug candidates. 
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Introduction 
 
Due to the "curse of attrition" drug side effects are subjects of increasing concerns1-4. In recent 
years a growing number of side effect databases helped pharmacovigilance efforts2,5-10. In 
addition, the prediction of drug side effects was a subject of several excellent network studies. 
These contributions constructed and analyzed drug—side effect networks1,8,11, side effect 
similarity-based drug—drug networks12-14, drug target—side effect networks (including 

correlated drug binding profiles and side effect profiles and protein domain networks)3,5,7,15,16, as 
well as drug—side effect—biological pathway multi-layer networks9,10,17,18. 
 Parallel with the sequencing of the human genome, the pharmaceutical industry 
increasingly turned towards rational drug design, where drug target candidates are selected on the 
basis of known disease-related genes. In recent years, however, it became apparent that drug 
action often extends beyond its primary target, and also affects the neighbourhood of the primary 
target in molecular networks4,19-23. The influence on network neighbourhood can be efficiently 
modelled as a spreading process. Indeed, network spreading efficiency became increasingly used 
to characterize the dynamics of a wide variety of networks, such as the propagation of infections 
and computer viruses24-26, as well as the spread of information, innovations and social 
influence27-30. Long-range spread of conformational changes via protein-protein interaction 
networks is supported by several pieces of experimental evidence31,32. Moreover, recent studies 
extended the use of information-spread to molecular networks highlighting the usefulness of this 
approach in finding key amino acids of protein structure networks, biologically relevant changes 
of cellular functions upon stress, reprogramming biological networks, and uncovering the 
attractor changes in malignant transformation33-36. However, network spreading efficiency has 
been used to characterize drug targets neither in general, nor restricted to targets of drugs having 
side effects. 
 In this study we investigated, whether the efficiency of drug target proteins to spread 
perturbations in the human interactome is larger, if drugs targeting them have side effects, as 
compared to the spreading efficiency of targets of those drugs, which have no reported side 
effects. Encouraged by our findings that drug targets in general, and targets of drugs having side 
effects in particular, spread perturbation better in the human interactome than other proteins, we 
specifically examined two diseases, colorectal cancer and diabetes. These two, wide-spread 
diseases were selected, since they represent target groups of different drug design strategies4, and 
they had been the subjects of several former network-related studies37-45. We found that 
colorectal cancer-related proteins were good spreaders and had a high centrality in the human 
protein-protein interaction network. On the contrary, type 2 diabetes-related proteins showed an 
average spreading efficiency, and had an average centrality. Additionally, network shortest path 
(geodesic distance) between drug targets and disease-related proteins was higher in diabetes than 
in colorectal cancer. Our results give novel details on the network topology and dynamics of 
disease-related and drug target proteins, and may initiate the development of novel, network-
based pharmacovigilance methods increasing the potential safety of drug candidates. 
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Results 
Targets of drugs with side effects spread perturbations better in the human interactome 
than targets of drugs without side effects 
The initial working hypothesis of our research was that drugs having protein targets that better 
propagate changes in the human interactome may have a higher probability of causing side 
effects. This hypothesis is in agreement with earlier findings showing that the interactome 
neighbourhood contributed to drug side-effect similarity20. In order to test our hypothesis, we 
compared the propagation of perturbations started from drug targets with and without known side 
effect, as well as that of non-target proteins in the human protein-protein interaction network 
using the Turbine network dynamics software package developed earlier in our group35. 
 To compare the spreading efficiency of drug target proteins with and without side effects 
we ran a series of perturbation simulations on the human interactome using the Turbine 
programme35. We assembled a human interactome containing 12,439 proteins and 174,666 edges 
using the STRING database46, out of which 1,726 were target proteins of 3,626 human drugs 
obtained from the DrugBank database47 and a total of 99,423 drug-side effect pairs from the 
SIDER database2 were analysed as described in Methods in detail. Simulations were based on the 
communicating vessels network dynamics model tested earlier35, where changes from one protein 
to its neighbours 'flow' in proportion with the energy differences between the 'source' and the 
'target' proteins. We examined a total of 495 target proteins of 597 drugs (Suppl. Table 1), which 
were reported to have side effects according to the SIDER database2. As control groups, we have 
also examined the 1,231 target proteins of the remaining 3,029 drugs having no reported side 
effects in the SIDER database2, as well as the remaining 10,713 proteins in our human 
interactome, which were not listed as drug targets in DrugBank47. For each selected protein target 
we calculated the silencing time, which is the number of time steps in the simulation needed for 
the initial perturbation to disappear completely due to dissipation. Small silencing time values 
were shown to be an efficient measure of large spreading efficiency of network nodes earlier35, 
since in this case the initial perturbation efficiently spreads in the network and it becomes 
dissipated fast. 

Fig. 1 shows the cumulative distribution of the normalized number of proteins having an 
increasing silencing time (thus decreasing perturbation efficiency). Targets of drugs with side 
effects had a significantly larger proportion of small silencing times (i.e. large spreading 
efficiency) than targets of drugs having no side effects (Mann-Whitney-Wilcoxon test, 
p=1.677e-5). Similarly, the proportion of targets of drugs without side effects having a small 
silencing time (i.e. large spreading efficiency) was significantly larger than that of human 
interactome proteins, which have not been reported as drug targets in DrugBank47 (Mann-
Whitney-Wilcoxon test, p=2.2e-16). Thus targets of drugs with side effects were found to be 
better spreaders of perturbations than targets of drugs having no reported side effects. 
Importantly, drug targets were also better spreaders of perturbations than non-target proteins. 
 Simulations shown on Fig. 1 were run with a starting energy of 1,000 units and a 
dissipation value of 5 units. Being curious whether our result is robust for the variations of 
simulation parameters, we repeated these simulations using a starting energy of 10,000 and a 
dissipation of 1 or 5 units. Under these conditions we obtained very similar results (Suppl. Figs. 1 
and 2) to those shown on Fig. 1. When we split the starting energy of 1,000 units equally among 
targets of multi-target drugs instead of examining each target protein alone as the source of 
perturbations, we were able to reproduce the same pattern (Suppl. Fig. 3) as that of Fig. 1. 
Furthermore, to test the robustness of the results against the choice of protein-protein interaction 



  4

network, we randomly deleted 50% of the 12,439 proteins in our human interactome. Examining 
the spreading efficiency in the giant component of this truncated interactome we obtained very 
similar results (Suppl. Fig. 4) to those shown in Fig. 1. 
 Next we were curious whether the larger spreading efficiency of drug targets with side 
effects, as compared to drug targets without side effects or proteins having no reported drugs 
bound to them, is also shown by examining perturbation reach values. Perturbation reach values 
show the number of proteins, which received the perturbation from the initial perturbation source 
protein until the perturbation was dissipated from the system. Small perturbation reach values 
were shown to characterize small spreading efficiency in earlier studies35, since in this case the 
original perturbation reached only a small number of proteins before it became dissipated. 
Targets of drugs with side effects had a significantly smaller proportion of small perturbation 
reach values (i.e. small spreading efficiency) than that of targets of drugs having no side effects 
(Mann-Whitney-Wilcoxon test, p=1.663e-5; Suppl. Fig. 5). Similarly, the proportion of targets of 
drugs without side effects having a small perturbation reach value (i.e. small spreading 
efficiency) was significantly smaller than that of human interactome proteins, which have not 
been reported as drug targets in DrugBank47 (Mann-Whitney-Wilcoxon test, p=2.2e-16; Suppl. 
Fig. 5). Using a starting energy of 10,000 but a dissipation of 1 instead of 5 units, or splitting this 
starting energy equally among targets of multi-target drugs, we obtained very similar results 
(Suppl. Figs. 6 and 7). These studies confirmed that drug targets are better spreaders of 
perturbations than non-target proteins, and also that targets of drugs with side effects are better 
spreaders of perturbations than targets of drugs having no reported side effects. 
 A qualitatively similar picture emerged, when we examined the spreading efficiency of 
target proteins of drugs against two diseases, colorectal cancer and type 2 diabetes (Suppl. Tables 
2-6). We chose these two diseases, because they represent very well the target groups of different 
drug design strategies4, and they had been the subjects of several former network-related 
studies37-45. Drug targets of both diseases were found to be better spreaders of perturbations than 
non-target proteins (Suppl. Fig. 8; p=3.367e-5 and p=5.88e-5 for colorectal cancer and diabetes, 
respectively). There was a tendency showing that targets of drugs with side effects were better 
spreaders of perturbations than targets of drugs having no reported side effects both in colorectal 
cancer and in diabetes. However, due to the low number of identified drug targets having side 
effects (3 and 25, respectively), these latter differences were not statistically significant (p=1 and 
p=0.2593, respectively). 

Colorectal cancer-related proteins are good spreaders of perturbations and have a high 
centrality, while type-2 diabetes-related proteins show an average spreading efficiency and 
average centrality 
Very importantly, a rather interesting difference emerged, when we examined the spreading 
efficiency of proteins related to colorectal cancer and diabetes. Mutated genes and their 
corresponding proteins in colorectal cancer and in type-2 diabetes were obtained from the Cancer 
Gene Census database48 (Suppl. Table 7) and from the article of Parchwani et al.49 (Suppl. Table 
8), respectively. In case of colorectal cancer, disease-associated proteins were found to be 
significantly better spreaders than the residual proteins of the human interactome. On the 
contrary, diabetes-related proteins showed indistinguishable spreading properties to the rest of 
human proteins, which were not associated with the onset of diabetes (Fig. 2). To test the 
robustness of the results against the choice of protein-protein interaction network, we randomly 
deleted 50% of the 12,439 proteins in our human interactome. Here again, colorectal cancer-
associated proteins were found to be significantly better spreaders than the residual proteins of 
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the human interactome (data not shown; p=0.00021 in Mann-Whitney test) and spreading 
efficiency of diabetes-related proteins showed no significant difference as compared to the rest of 
human proteins (data not shown; p=0.095 in Mann-Whitney test). 
 These findings are in agreement with earlier results showing that cancer-associated 
proteins are enriched in proteins having a high centrality in the human interactome37,38,40,42-45. 
Indeed, in our human interactome, cancer-related proteins had a significantly higher degree, 
closeness and betweenness centralities than diabetes-related proteins, having a 9.6-, 1.2- and 54-
fold increase, respectively (Table 1).  In agreement with their similar silencing time values 
(Suppl. Fig. 8), drug targets without or with side effects showed no significant centrality 
differences in the human interactome (Suppl. Table 9). 

The interactome distance between drug targets and disease-related proteins is higher in 
diabetes than in colorectal cancer 
Encouraged by the results showing an increased centrality of cancer-related, but not of diabetes-
related proteins in the human interactome, we examined the interactome geodesic distance (i.e. 
shortest path) between drug targets and disease related proteins in both diseases using the 
neighbourhood matrices of related proteins. Our data show that the geodesic distance in the 
human interactome between drug targets and disease-related proteins is significantly larger in 
case of type-2 diabetes than in colorectal cancer (targets without side effects: p=1.062e-5; targets 
with side effects: p=5.441e-3). (Table 2; Suppl. Tables 10-13 and Suppl. Fig. 9) This finding is 
supported by the visual representation of the human sub-interactome of drug target and disease-
related proteins of these two diseases (Suppl. Fig. 10), where drug targets and disease-related 
proteins of colorectal cancer are intertwined, while these two groups of proteins remain rather 
separated in type-2 diabetes. This observation is further substantiated by the fact, that only 1 of 
the 18 colorectal cancer-related proteins (6%) is not connected to the giant component of the sub-
interactome, while 10 of the 14 diabetes-related proteins (71%) are missing from the same giant 
component (Suppl. Fig. 10). 
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Discussion 
 
The most important finding of our study is that 1.) drug targets are better spreaders of 
perturbations in the human interactome than non-target proteins in general; and in particular, 2.) 
targets of drugs with side effects are also better spreaders of perturbations than targets of drugs 
having no reported side effects (Fig. 1). These findings were robust, since they could be 
reproduced when we used different perturbation parameters (Suppl. Figs. 1, 2 and 3), different 
measures of perturbation spread (Suppl. Figs. 5, 6 and 7), and reduced the size (coverage) of the 
human interactome to half of the original (Suppl. Fig. 4). These results are in agreement with 
those of a previous study showing that the interactome neighbourhood contributed to side-effect 
similarity20. 
 Importantly, colorectal cancer-related proteins are good spreaders of perturbations and 
had a high centrality, while type-2 diabetes-related proteins showed an average spreading 
efficiency and had an average centrality in the human interactome (Fig. 2 and Table 1). These 
findings are in agreement with earlier results showing that cancer-associated proteins are 
enriched in hubs, bottlenecks and bridges all having a high centrality in the human 
interactome37,38,40,42-45. 
 Furthermore, the interactome-distance between drug targets and disease-related proteins 
was higher in diabetes than in colorectal cancer (Table 2; Suppl. Tables 10-13 and Suppl. Fig. 9). 
This finding is in agreement with both the results of previous studies and intuitive insights on the 
classification of drug target strategies4. Most drug targets are 3 or 4 steps away in the human 
interactome from proteins involved in the same disease50. Moreover, cancer-related and 
metabolic disease-related proteins were shown to have an average network distance to the related 
drug targets of 2.3 and ~5 network edges, which are smaller and higher than the most abundant 
distance values, respectively, forming the two extremes of the distance-spectrum50. The former 
value is in the range we found in our study (Table 2). The latter value of a disease group 
containing diabetes is much larger than that related to cancer, which is again in agreement with 
our findings. As a general trend, rapidly proliferating cells, like those in cancer, are attacked at 
their central proteins, while differentiated cells, such as those involved in type-2 diabetes, are 
attacked at the neighbours of central proteins4. These assumptions are also in agreement with a 
smaller network distance of centrally positioned cancer-related proteins from centrally positioned 
cancer drug targets than the distance between the more peripheral diabetes-related proteins and 
drug targets. 
 Analysis of perturbation spread in molecular networks may be used to develop additional, 
network-based tests to increase the potential safety of drug candidates. Assessment of 
perturbation spread in weighted networks (where the edges are weighted according to the 
abundance of their end-node proteins of relevant tissues, e.g. the endothelial cell in colorectal 
cancer, as well as hepatocyte and myocyte in diabetes, as described in our earlier study for the 
yeast interactome51), directed networks (such as signalling networks4,52), or networks considering 
the subcellular localization of participating proteins53, as well as using quantitative measures of 
side-effect severity and abundance may provide additional information and will be subjects of 
later studies. 
 In summary, our results contributed to a better understanding of the network position and 
dynamics of disease-related and drug target proteins. The findings may help the future 
development of novel, network-based pharmacovigilance methods increasing the potential safety 
of drug candidates. 
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Methods 

Construction of the human protein-protein interaction network 
In this paper, we examined the propagation of perturbations in the human protein-protein 
interaction network (interactome). The choice of this type of network was driven by the fact that 
it contains the most proteins and the greatest number of connections (as opposed to signalling 
networks or regulatory networks). Human interactome data were downloaded from the STRING 
database46 on 8 February, 2013. STRING contains interaction data based on a vast number of 
data collection principles. We have only used manually collected ('database' column) or 
experimental ('experiments' column) data having higher reliability than e.g. predicted data. Only 
human protein-protein interactions were included in the interactome. In order to facilitate the 
comparison with drug targets, the STRING Ensemble Protein ID (ENSP) protein codes were 
translated to UniProt ID54 using the UniProt translator. From the original 13,484 ENSP IDs we 
managed to translate 12,493 to UniProt IDs, but only 12,439 proteins were connected to other 
proteins. The database contained a total of 377,920 human protein-protein interactions, out of 
which 350,528 remained after translating the protein IDs to UniProt IDs using the UniProt 
translator, which were further reduced to 174,666 after eliminating multiple links and loops (self-
links). The original STRING database also contained edge weights indicating the reliability of 
data. Since we only worked with manually collected and experimental data, our interactome 
contained no edge weights. 

Measurement of the propagation of perturbations in the human interactome 
The propagation of perturbations in the human interactome was measured with the network 
perturbation analysis software for simulating network dynamics called Turbine35. For the 
simulation experiments we chose the software's communicating vessels model35, where changes 
from one protein to its neighbours 'flow' in proportion with the energy differences between the 
'source' and the 'target' proteins. The communicating vessels model35 contains a starting energy 
(E) and a dissipation parameter (D), where the starting energy is distributed equally among the 
proteins of the human interactome specified at the individual simulations, while in each step of 
the simulation the program subtracts D units of energy from each protein of the interactome. In 
most simulations E and D were set to 1000 and 5 units, respectively. Having these starting energy 
and dissipation parameters it was possible to trace the propagation of perturbations in the network 
rather easily. However, all the key simulations were also examined using different E and D 
values to examine the robustness of the results. To characterise the propagation efficiency of the 
starting node(s), the measure of silencing time35 was used, which is the time elapsed from the 
start of the simulation until the energy of all nodes reaches the minimum threshold of less than 1 
unit. We also calculated perturbation reach values35, which show the number of proteins 
receiving the perturbation from the initial perturbation source protein until the perturbation was 
dissipated from the system. 

Characterisation of drug side effects 
Drug side effects were collected from the SIDER database2. This database contains information 
about drug side effects and their frequencies from public documentation and package inserts, 
with the help of drug labels and terms from MedDRA (Medical Dictionary for Regulatory 
Activities). SIDER data were downloaded from the version of 17 October, 2012. This version of 
the SIDER database2 contained 996 drugs, 4,192 unique side effects and 215,850 drug-side effect 
pairs. After eliminating the duplicates, 99,423 drug-side effect pairs remained. In order to be able 
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to compare data, we converted drug IDs in the SIDER database2 into IDs of the DrugBank 
database47 by matching the drug names. 

Characterisation of drug targets 
We collected drug targets from the DrugBank database47 version last updated on 10 February, 
2013. The XML version of the database was used, including the drug names, indications and 
target list. The proteins in the target list were identified by their UniProt IDs54 with the help of the 
external reference table available in the database. From the drug target list only those drugs that 
targeted human proteins were selected. From the original 6,718 drugs 3,926 such drugs were 
found, of which 3,626 had target proteins contained in our human interactome. 

After comparison with the drug—side effect data from the SIDER database2, we found that 597 
drugs (with a total of 495 target proteins) had known side effects, while the remaining 3,029 
drugs (with 1,231 target proteins) had no reported side effects to date. 

Protein and drug target data related to the two examined diseases: colorectal cancer and 
type 2 diabetes 
Genes involved in colorectal cancer were collected from the Cancer Gene Census48 database, by 
selecting those proteins in the entire database that contained the word 'colorectal' in their 'Tumour 
Types' column. Genes related to type 2 diabetes were obtained from the article of Parchwani et 
al.49. The 18 genes involved in colorectal cancer and the 46 genes related to type 2 diabetes were 
then mapped to proteins marked by UniProt ID54 with the help of the Protein Identifier Cross-
Reference (PICR)55 application. See Suppl. Tables 7 and 8 for the genes and their respective 
proteins involved in the two diseases. From these proteins, all 18 colorectal cancer-related but 
only 14 type 2 diabetes-related were contained in our interactome. Drugs used in treatment of 
colorectal cancer and diabetes and their drug targets were collected based on the drug indications 
in the DrugBank database47. See Suppl. Table 2 for the relevant keywords used. We found 11 
drugs against colorectal cancer and 36 against type 2 diabetes, which all had valid targets. Drugs 
against colorectal cancer and type 2 diabetes had 33 and 42 target proteins, respectively, out of 
which 27 and 39, respectively, were contained in our human interactome. 

Other methods 
A number of Bash shell scripts were written to automate the network simulation experiments 
with Turbine. Statistical analysis of the results was performed with the R software package56. The 
Pajek software57 was used to measure geodesic distances and centralities in the human 
interactome, the Cytoscape software58 was used to create images of the human interactome and 
the Inkscape software59 was used to create some other images. 
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Figure 1│Cumulative silencing time distribution of drug targets and non-target proteins. 
The diagram shows the cumulative distribution of the normalized number of proteins with given 
silencing times, which are drug targets with known side effects (blue dashed line), which are drug 
targets without known side effects (red solid line) and which are not drug targets (green dotted 
line). The number of proteins was normalized by dividing the number of proteins in each 
silencing time range by the total number of proteins allowing a better comparison. The total 
number of drug targets with and without side effects and non-target proteins was 495, 1,231 and 
10,713, respectively. The human interactome containing 12,439 proteins and 174,666 edges was 
built from the STRING database46, 1,726 human drug targets were obtained from the DrugBank 
database47 and 99,423 drug-side effect pairs were taken from the SIDER database2. Silencing 
times were calculated separately for every protein/drug target with the Turbine program35 as 
described in the Methods section using a starting energy of 1,000 and a dissipation value of 5 
units. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test 
function of the R package56. There was a statistically significant difference (p=1.677e-5) between 
the silencing times of drug targets with known side effects and the silencing times of drug targets 
without reported side effects. The difference between the silencing times of drug targets and non-
target proteins was also statistically significant (p=2.2e-16). 
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Figure 2│Cumulative silencing time distribution of colorectal cancer- and type 2 diabetes 
mellitus-related proteins, as well as proteins, which are not related to these diseases. The 
diagram shows the cumulative distribution of the normalized number of proteins with given 
silencing times, which are related to the disease (red line), as well as those, which are not related 
to the disease (green dotted line); for colorectal cancer (Panel A) and type 2 diabetes (Panel B). 
The number of proteins was normalized by dividing the number of proteins in each silencing time 
range by the total number of proteins allowing a better comparison. The total number of 
colorectal cancer-related proteins and type 2 diabetes-related proteins in the human interactome 
was 18 and 14, respectively. The human interactome containing 12,439 proteins and 174,666 
edges was built from the STRING database46. Colorectal cancer- and type 2 diabetes-related 
proteins were obtained from the Cancer Gene Census database48 and from the article of 
Parchwani et al.49, respectively. Silencing times were calculated separately for every protein with 
the Turbine program35 as described in the Methods section using a starting energy of 1,000 and a 
dissipation value of 5 units. Statistical analysis was performed using the Mann-Whitney 
(Wilcoxon rank sum) test function of the R package56. There was a statistically significant 
difference between the silencing times of disease-related and non-related proteins in case of 
colorectal cancer (p=2.329e-9) and but there was none in case of type 2 diabetes (p=0.8343). 
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Table 1│Average human interactome centralities of proteins related to colorectal cancer 
and type 2 diabetes 

Disease-related proteins Proteins, which are not related to 
any of the two diseases 

Centrality 
type 

Colorectal 
cancer 

Type 2 
diabetes 

Statistical 
difference 
between 
cancer- and 
diabetes-
related 
proteins 

Centrality 
value 

Statistical 
difference 
from 
values of 
cancer-
related 
proteins 

Statistical 
difference 
from 
values of 
diabetes-
related 
proteins 

Degree 
(number of 
neighbours) 

159.5 9.000 7.09e-5 9.000 2.58e-9 0.830 

Closeness 
centrality 
(1/edge) 

0.357 0.294 3.46e-5 0.277 1.90e-10 0.122 

Betweenness 
centrality 
(fraction of 
shortest paths 
passing through 
the node) 

2.55e-3 1.16e-5 1.24e-4 1.34e-5 3.23e-9 0.922 

The table shows the medians of the centralities of proteins related to colorectal cancer and type 2 
diabetes (results were very similar, if instead of medians we used their arithmetic means; data not 
shown). The total number of colorectal cancer- and type 2 diabetes-related proteins was 18 and 
14, respectively. Centrality values were calculated with the Pajek programme57. The human 
interactome containing 12,439 proteins and 174,666 edges was built from the STRING 
database46. Colorectal cancer-related proteins were obtained from the Cancer Gene Census 
database48, type 2 diabetes-related proteins were obtained from the article of Parchwani et al.49. 
Statistical analysis was performed using the Wilcoxon rank sum (Mann-Whitney) test function of 
the R package56. 
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Table 2│Average network distance of drug targets without and with known side effects 
used in the treatment of colorectal cancer and type 2 diabetes from the disease-associated 
proteins 

Protein group 
Average network distance 
from disease-related proteins 

(edges) 
24 drug targets without known side effects 
used in the treatment of colorectal cancer 

2.528 

3 drug targets with known side effects used 
in the treatment of colorectal cancer 

2.389 

14 drug targets without known side effects 
used in the treatment of type 2 diabetes 

3.250* 

25 drug targets with known side effects 
used in the treatment of type 2 diabetes 

3.234** 

*This value is significantly greater than the average network distance of drug targets without known side 
effects in colorectal cancer (p=1.062e-05). Statistical analysis was performed using the Welch (Student’s) 
two sample t-test function of the R package56. 
**This value is significantly greater than the average network distance of drug targets with known side 
effects in colorectal cancer (p=0.005441). Statistical analysis was performed using the Welch (Student’s) 
two sample t-test function of the R package56. 

The table shows the arithmetic mean of the average network distance between drug targets (with 
and without known side effects used in the treatment of colorectal cancer and type 2 diabetes) 
and the proteins related to the respective disease (results were very similar, if instead of 
arithmetic means we used the medians; data not shown). The total number of colorectal cancer- 
and diabetes-related proteins in the human interactome were 18 and 14, respectively. Average 
network distances were calculated as shortest paths using the Pajek programme58. Proteins were 
labelled by their UniProt ID54. Human interactome containing 12,439 proteins and 174,666 edges 
was built from the STRING database46, 1,726 human drug targets were obtained from the 
DrugBank database47 and 99,423 drug-side effect pairs were taken from the SIDER database2. 
Colorectal cancer- and type 2 diabetes-related proteins were obtained from the Cancer Gene 
Census database48 and from the article of Parchwani et al.49, respectively. We used the mean 
values and the t-test because of the near-normal distribution of the average network distances. 
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Figure 1│Cumulative silencing time distribution of drug targets and non-target proteins 
with a starting energy of 10,000 and a dissipation value of 5. The diagram shows the 
cumulative distribution of the normalized number of proteins with given silencing times, which 
are drug targets with known side effects (blue dashed line), which are drug targets without 
known side effects (red solid line) and which are not drug targets (green dotted line). The 
number of proteins was normalized by dividing the number of proteins in each silencing time 
range by the total number of proteins allowing a better comparison. The total number of drug 
targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, 
respectively. The figure shows the 99.99% of all proteins (having a silencing time below 1500). 
The human interactome containing 12,439 proteins and 174,666 edges was built from the 
STRING database1, 1,726 human drug targets were obtained from the DrugBank database2 and 
99,423 drug-side effect pairs were taken from the SIDER database3. Silencing times were 
calculated separately for every protein with the Turbine program4 as described in the Methods 
section of the main text with a starting energy of 10,000 and a dissipation value of 5 units. 
Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of 
the R package5. There was a statistically significant difference (p=1.701e-5) between the 
silencing times of drug targets with known side effects and the silencing times of drug targets 
without known side effects. The difference between the silencing times of drug targets and non-
target proteins was also statistically significant (p=2.2e-16). 
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Figure 2│Cumulative silencing time distribution of drug targets and non-target proteins 
with a starting energy of 10,000 and a dissipation value of 1. The diagram shows the 
cumulative distribution of the normalized number of proteins with given silencing times, which 
are drug targets with known side effects (blue dashed line), which are drug targets without 
known side effects (red solid line) and which are not drug targets (green dotted line). The 
number of proteins was normalized by dividing the number of proteins in each silencing time 
range by the total number of proteins allowing a better comparison. The total number of drug 
targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, 
respectively. The figure shows 99.61% of all proteins (having a silencing time below 4000). The 
human interactome containing 12,439 proteins and 174,666 edges was built from the STRING 
database1, 1,726 human drug targets were obtained from the DrugBank database2 and 99,423 
drug-side effect pairs were taken from the SIDER database3. Silencing times were calculated 
separately for every protein with the Turbine program4 as described in the Methods section of the 
main text with a starting energy of 10,000 and a dissipation value of 1 unit. Statistical analysis 
was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package5. 
There was a statistically significant difference (p=9.635e-6) between the silencing times of drug 
targets with known side effects and the silencing times of drug targets without known side 
effects. The difference between the silencing times of drug targets and non-target proteins was 
also statistically significant (p=2.2e-16). 
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Figure 3│Cumulative silencing time distribution of drugs and non-target proteins with 
starting energy of 1,000 and a dissipation value of 5 with distributed starting energy among 
multiple targets. The diagram shows the cumulative silencing time distribution of the 
normalized number of drugs with known side effects (blue dashed line), drugs without known 
side effects (red solid line) and non-target proteins (green dotted line). The number of 
proteins/drugs was normalized by dividing the number of proteins/drugs in each silencing time 
range by the total number of proteins/drugs allowing a better comparison. The total number of 
drugs with and without side effects, and non-target proteins was 597, 3,029 and 10,713, 
respectively. The human interactome containing 12,439 proteins and 174,666 edges was built 
from the STRING database1, 3,626 human drugs were obtained from the DrugBank database2 
and 99,423 drug-side effect pairs were taken from the SIDER database3. Silencing times were 
calculated separately for every protein/drug with the Turbine program4 as described in the 
Methods section of the main text with a starting energy of 1000 and a dissipation value of 5 
units. In case of drugs with multiple targets, the starting energy was distributed evenly among the 
drug targets. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) 
test function of the R package5. There was a statistically significant difference (p=2.2e-16) 
between the silencing times of drugs with known side effects and the silencing times of drugs 
without known side effects. The difference between the silencing times of drugs and non-target 
proteins was also statistically significant (p=2.2e-16). 
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Figure 4│Cumulative silencing time distribution of drug target proteins and non-target 
proteins with a starting energy of 1000 and a dissipation value of 5 using a 50% smaller 
interactome. The diagram shows the cumulative distribution of the normalized number of 
proteins with given silencing times, which are drug targets with known side effects (blue dashed 
line), which are drug targets without known side effects (red solid line) and which are not drug 
targets (green dotted line). The number of proteins was normalized by dividing the number of 
proteins in each silencing time range by the total number of proteins allowing a better 
comparison. The total number of drug targets with and without side effects, and non-target 
proteins was 495, 1,231 and 10,713, respectively. The human interactome containing 12,439 
proteins and 174,666 edges was built from the STRING database1, 1,726 human drug targets 
were obtained from the DrugBank database2 and 99,423 drug-side effect pairs were taken from 
the SIDER database3. 50% of the original interactome proteins were deleted randomly. The giant 
component of the remaining interactome contained 5,549 proteins (45%), 806 drug target 
proteins total (47%) and 232 drug targets with known side effects (47%). Silencing times were 
calculated separately for every protein with the Turbine program4 as described in the Methods 
section of the main text with a starting energy of 1,000 and a dissipation value of 5 units. 
Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of 
the R package5. There was a statistically significant difference (p=3.368e-4) between the 
silencing times of drug targets with known side effects and the silencing times of drug targets 
without known side effects. The difference between the silencing times of drug targets and non-
target proteins was also statistically significant (p=2.2e-16). 
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Figure 5│Cumulative perturbation reach distribution of drug targets and non-target 
proteins with a starting energy of 10,000 and a dissipation value of 5. The diagram shows the 
cumulative distribution of the normalized number of proteins with given perturbation reach 
values, which are drug targets with known side effects (blue dashed line), which are drug targets 
without known side effects (red solid line) and which are not drug targets (green dotted line). 
The number of proteins was normalized by dividing the number of proteins in each perturbation 
reach range by the total number of proteins allowing a better comparison. The total number of 
drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, 
respectively. The figure shows 97.25% of all proteins (having a perturbation reach below 200 
proteins reached). The human interactome containing 12,439 proteins and 174,666 edges was 
built from the STRING database1, 1,726 human drug targets were obtained from the DrugBank 
database2 and 99,423 drug-side effect pairs were taken from the SIDER database3. Perturbation 
reach values were calculated separately for every protein with the Turbine program4 as described 
in the Methods section of the main text with a starting energy of 10,000 and a dissipation value 
of 5 units. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test 
function of the R package5. There was a statistically significant difference (p=1.663e-5) between 
the perturbation reach values of drug targets with known side effects and the perturbation reach 
values of drug targets without known side effects. The difference between the perturbation reach 
values of drug targets and non-target proteins was also statistically significant (p=2.2e-16). 
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Figure 6│Cumulative perturbation reach distribution of drug targets and non-target 
proteins with a starting energy of 10,000 and a dissipation value of 1. The diagram shows the 
cumulative distribution of the normalized number of proteins with given perturbation reach 
values, which are drug targets with known side effects (blue dashed line), which are drug targets 
without known side effects (red solid line) and which are not drug targets (green dotted line). 
The number of proteins was normalized by dividing the number of proteins in each perturbation 
reach range by the total number of proteins allowing a better comparison. The total number of 
drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, 
respectively. The figure shows 97.25% of all proteins (having a perturbation reach below 200 
proteins reached). The human interactome containing 12,439 proteins and 174,666 edges was 
built from the STRING database1, 1,726 human drug targets were obtained from the DrugBank 
database2 and 99,423 drug-side effect pairs were taken from the SIDER database3. Perturbation 
reach values were calculated separately for every protein with the Turbine program4 as described 
in the Methods section of the main text with a starting energy of 10,000 and a dissipation value 
of 1 unit. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test 
function of the R package5. There was a statistically significant difference (p=1.49e-5) between 
the perturbation reach values of drug targets with known side effects and the perturbation reach 
values of drug targets without known side effects. The difference between the perturbation reach 
values of drug targets and non-target proteins was also statistically significant (p=2.2e-16). 
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Figure 7│Cumulative perturbation reach distribution of drugs and non-target proteins 
with starting energy of 10,000 and a dissipation value of 1 with distributed starting energy 
among multiple targets. The diagram shows the cumulative perturbation reach distribution of 
the normalized number of drugs with known side effects (blue dashed line), drugs without 
known side effects (red solid line) and non-target proteins (green dotted line). The number of 
proteins/drugs was normalized by dividing the number of proteins/drugs in each perturbation 
reach range by the total number of proteins/drugs allowing a better comparison. The total 
number of drugs with and without side effects, and non-target proteins was 597, 3,029 and 
10,713, respectively. The figure shows 99.58% of all proteins/drugs (having a perturbation reach 
below 400 proteins reached). The human interactome containing 12,439 proteins and 174,666 
edges was built from the STRING database1, 3,626 human drugs were obtained from the 
DrugBank database2 and 99,423 drug-side effect pairs were taken from the SIDER database3. 
Perturbation reach values were calculated separately for every protein/drug with the Turbine 
program4 as described in the Methods section of the main text with a starting energy of 10,000 
and a dissipation value of 1 unit. In case of drugs with multiple targets, the starting energy was 
distributed evenly among the drug targets. Statistical analysis was performed using the Mann-
Whitney (Wilcoxon) test function of the R package5. There was a statistically significant 
difference (p=6.176e-8) between the perturbation reach values of drugs with known side effects 
and the perturbation reach values of drugs without known side effects. The difference between 
the perturbation reach values of drugs and non-target proteins was also statistically significant 
(p=2.2e-16). 
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Figure 8│Cumulative silencing time distribution of targets of drugs used in the treatment 
of colorectal cancer and type 2 diabetes mellitus. The diagram shows the cumulative 
distribution of the normalized number of proteins with given silencing times, which are drug 
targets used in the treatment of the disease with known side effects (blue dashed line), which are 
drug targets used in the treatment of the disease without known side effects (red solid line) and 
which are not drug targets (green dotted line); for colorectal cancer (Panel A) and type 2 diabetes 
(Panel B). The number of proteins was normalized by dividing the number of proteins in each 
silencing time range by the total number of proteins allowing a better comparison. The total 
number of drug targets used in the treatment of colorectal cancer with and without side effects 
was 3 and 24, respectively, while for type 2 diabetes the total number of drug targets was 25 and 
14, respectively. The human interactome containing 12,439 proteins and 174,666 edges was built 
from the STRING database1, 1,726 human drug targets were obtained from the DrugBank 
database2 and 99,423 drug-side effect pairs were taken from the SIDER database3. Silencing 
times were calculated separately for every protein with the Turbine program4 as described in the 
Methods section of the main text with a starting energy of 1,000 and a dissipation value of 5 
units. Statistical analysis was performed using the Mann-Whitney-Wilcoxon test of the R 
package5. No statistically significant difference could be shown between silencing times of 
targets with known side effects and silencing times of targets without known side effects of 
drugs used in the treatment of colorectal cancer (p=1) and type 2 diabetes (p=0.2593). However, 
the difference between the silencing times of drug targets and non-target proteins was 
statistically significant for drug targets used in the treatment of both colorectal cancer (p=3.367e-
5) and type 2 diabetes (p=5.88e-5). 
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Figure 9│Human interactome distance between drug targets used in the treatment of 
colorectal cancer and type 2 diabetes, between proteins related to these diseases and 
randomly selected proteins. The figure shows the average human interactome distances 
between the following proteins: drug targets used in the treatment of colorectal cancer and type 2 
diabetes with and without side effects (orange circles), proteins related to these diseases (green 
circles) and randomly selected proteins (blue circles). The sides of the triangles (the distance 
between the centres of the circles) are proportional to the average number of human interactome 
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edges between the respective protein groups, while the vertical lines associated with the sides of 
the triangles correspond to the standard deviation (SD). The average distance between randomly 
selected proteins and disease-related proteins was 2.82 edges (SD: 0.601) for colorectal cancer 
and 3.43 edges (SD: 0.557) for type 2 diabetes; between randomly selected proteins and drug 
targets with side effects was 3.24 edges (SD: 0.551) for colorectal cancer and 3.44 edges (SD: 
0.490) for type 2 diabetes; between randomly selected proteins and drug targets without side 
effects was 3.32 edges (SD: 0.533) for colorectal cancer and 3.41 edges (SD: 0.545) for type 2 
diabetes; between disease-related proteins and drug targets with side effects was 2.39 edges (SD: 
0.242) for colorectal cancer and 3.23 edges (SD: 0.522) for type 2 diabetes; between disease-
related proteins and drug targets without side effects was 2.53 edges (SD: 0.388) for colorectal 
cancer and 3.25 edges (SD: 0.402) for type 2 diabetes. Sizes of the circles are proportional to the 
number of proteins contained in each group. There were 50 randomly selected proteins; 18 
colorectal cancer-related and 14 type 2 diabetes-related proteins; 3 drug targets with and 24 drug 
targets without side effects used in the treatment of colorectal cancer; 25 drug targets with and 14 
drug targets without side effects used in the treatment of type 2 diabetes. The human interactome 
containing 12,439 proteins and 174,666 edges was built from the STRING database1, 1,726 
human drug targets were obtained from the DrugBank database2 and 99,423 drug-side effect 
pairs were taken from the SIDER database3. Network distances were calculated as shortest paths 
using the Pajek programme6 as described in the Methods section of the main text and are detailed 
in Tables 10-13. The figure was created using Inkscape7. 
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Figure 10│Human protein-protein interaction network of the proteins related to colorectal 
cancer and type 2 diabetes and the drug targets used in the treatment of these diseases. The 
figure shows the giant component of the human protein-protein interaction network containing 
the proteins related to colorectal cancer and type 2 diabetes mellitus and the drug targets used in 
the treatment of these diseases. Red nodes represent proteins or drug targets related to colorectal 
cancer, blue nodes represent those related to type 2 diabetes, while purple nodes represent those 
related to both. Ellipses, octagons and squares represent proteins related to diseases, drug targets 
without known side effects and drug targets with known side effects, respectively. Node 
highlighted by green box (a.) is the TCF7L2 protein related to both diseases, which is the 
transcription factor 7-like 2 participating in the Wnt signalling pathway and modulating MYC 
expression. The highly interconnected node cluster highlighted by green box (b.) contains 11 
drug targets without known side effects used in the treatment of colorectal cancer, which are all 
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tubuline chain proteins. Node highlighted by green box (c.) representing protein GLP1R, the 
glucagon-like peptide 1 receptor, is connected only to node TUBB3 of the tubuline cluster (b.). 
The highly interconnected node cluster highlighted by green box (d.) contains 5 drug targets with 
known side effects used in the treatment of type 2 diabetes which are the  peroxisome 
proliferator-activated receptors alpha (PPARA), gamma (PPARG) and delta (PPARD) and the 
estrogen-related receptors alpha (ESRRA) and gamma (ESSRG). The network hub highlighted 
by green box (e.) is TP53, the cellular tumour antigen p53. Node sizes are proportional to the 
degrees of the respective proteins in the full human protein-protein interaction network. All 
proteins here are referenced by their UniProt ID9. The human interactome containing 12,439 
proteins and 174,666 edges was built from the STRING database1, 1,726 human drug targets 
were obtained from the DrugBank database2 and 99,423 drug-side effect pairs were taken from 
the SIDER database3. Node degrees were calculated with the Pajek programme6 as described in 
the Methods section of the main text. The figure was created using Cytoscape8 and Inkscape7. 
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Supplementary Tables 

Table 1│Drugs obtained from the DrugBank database, which have known side effects in 
the SIDER database 

DBID Drug Name 

DB00001 Lepirudin 

DB00006 Bivalirudin 

DB00046 Insulin Lispro 

DB00047 Insulin Glargine 

DB00050 Cetrorelix 

DB00063 Eptifibatide 

DB00106 Abarelix 

DB00115 Cyanocobalamin 

DB00125 L-Arginine 

DB00152 Thiamine 

DB00162 Vitamin A 

DB00175 Pravastatin 

DB00176 Fluvoxamine 

DB00177 Valsartan 

DB00178 Ramipril 

DB00180 Flunisolide 

DB00182 Amphetamine 

DB00184 Nicotine 

DB00185 Cevimeline 

DB00186 Lorazepam 

DB00187 Esmolol 

DB00188 Bortezomib 

DB00191 Phentermine 

DB00193 Tramadol 

DB00195 Betaxolol 

DB00197 Troglitazone 

DB00198 Oseltamivir 

DB00200 Hydroxocobalamin 

DB00201 Caffeine 

DB00202 Succinylcholine 

DB00204 Dofetilide 

DB00205 Pyrimethamine 

DB00206 Reserpine 

DB00208 Ticlopidine 

DBID Drug Name 

DB00210 Adapalene 

DB00211 Midodrine 

DB00213 Pantoprazole 

DB00214 Torasemide 

DB00215 Citalopram 

DB00216 Eletriptan 

DB00218 Moxifloxacin 

DB00222 Glimepiride 

DB00227 Lovastatin 

DB00228 Enflurane 

DB00231 Temazepam 

DB00240 Alclometasone 

DB00242 Cladribine 

DB00243 Ranolazine 

DB00246 Ziprasidone 

DB00247 Methysergide 

DB00248 Cabergoline 

DB00252 Phenytoin 

DB00253 Medrysone 

DB00257 Clotrimazole 

DB00264 Metoprolol 

DB00268 Ropinirole 

DB00273 Topiramate 

DB00276 Amsacrine 

DB00277 Theophylline 

DB00278 Argatroban 

DB00280 Disopyramide 

DB00281 Lidocaine 

DB00282 Pamidronate 

DB00284 Acarbose 

DB00285 Venlafaxine 

DB00286 Conjugated Estrogens 

DB00287 Travoprost 

DB00288 Amcinonide 

DBID Drug Name 

DB00289 Atomoxetine 

DB00292 Etomidate 

DB00293 Raltitrexed 

DB00295 Morphine 

DB00296 Ropivacaine 

DB00297 Bupivacaine 

DB00302 Tranexamic Acid 

DB00307 Bexarotene 

DB00308 Ibutilide 

DB00310 Chlorthalidone 

DB00312 Pentobarbital 

DB00313 Valproic Acid 

DB00315 Zolmitriptan 

DB00316 Acetaminophen 

DB00317 Gefitinib 

DB00318 Codeine 

DB00320 Dihydroergotamine 

DB00321 Amitriptyline 

DB00323 Tolcapone 

DB00324 Fluorometholone 

DB00327 Hydromorphone 

DB00328 Indomethacin 

DB00331 Metformin 

DB00332 Ipratropium bromide 

DB00333 Methadone 

DB00334 Olanzapine 

DB00335 Atenolol 

DB00337 Pimecrolimus 

DB00338 Omeprazole 

DB00343 Diltiazem 

DB00344 Protriptyline 

DB00346 Alfuzosin 

DB00349 Clobazam 

DB00350 Minoxidil 
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DBID Drug Name 

DB00351 Megestrol 

DB00356 Chlorzoxazone 

DB00357 Aminoglutethimide 

DB00358 Mefloquine 

DB00360 Tetrahydrobiopterin 

DB00361 Vinorelbine 

DB00363 Clozapine 

DB00364 Sucralfate 

DB00367 Levonorgestrel 

DB00368 Norepinephrine 

DB00370 Mirtazapine 

DB00371 Meprobamate 

DB00373 Timolol 

DB00374 Treprostinil 

DB00376 Trihexyphenidyl 

DB00377 Palonosetron 

DB00379 Mexiletine 

DB00380 Dexrazoxane 

DB00381 Amlodipine 

DB00382 Tacrine 

DB00384 Triamterene 

DB00388 Phenylephrine 

DB00390 Digoxin 

DB00393 Nimodipine 

DB00396 Progesterone 

DB00398 Sorafenib 

DB00401 Nisoldipine 

DB00404 Alprazolam 

DB00408 Loxapine 

DB00411 Carbachol 

DB00412 Rosiglitazone 

DB00413 Pramipexole 

DB00418 Secobarbital 

DB00419 Miglustat 

DB00421 Spironolactone 

DB00422 Methylphenidate 

DB00423 Methocarbamol 

DB00425 Zolpidem 

DBID Drug Name 

DB00431 Lindane 

DB00433 Prochlorperazine 

DB00434 Cyproheptadine 

DB00437 Allopurinol 

DB00439 Cerivastatin 

DB00440 Trimethoprim 

DB00441 Gemcitabine 

DB00444 Teniposide 

DB00446 Chloramphenicol 

DB00448 Lansoprazole 

DB00449 Dipivefrin 

DB00450 Droperidol 

DB00454 Meperidine 

DB00457 Prazosin 

DB00458 Imipramine 

DB00459 Acitretin 

DB00461 Nabumetone 

DB00462 Methylscopolamine 

DB00465 Ketorolac 

DB00471 Montelukast 

DB00472 Fluoxetine 

DB00474 Methohexital 

DB00475 Chlordiazepoxide 

DB00476 Duloxetine 

DB00477 Chlorpromazine 

DB00480 Lenalidomide 

DB00481 Raloxifene 

DB00482 Celecoxib 

DB00484 Brimonidine 

DB00486 Nabilone 

DB00489 Sotalol 

DB00490 Buspirone 

DB00491 Miglitol 

DB00492 Fosinopril 

DB00494 Entacapone 

DB00496 Darifenacin 

DB00497 Oxycodone 

DB00499 Flutamide 

DBID Drug Name 

DB00500 Tolmetin 

DB00501 Cimetidine 

DB00502 Haloperidol 

DB00518 Albendazole 

DB00519 Trandolapril 

DB00521 Carteolol 

DB00530 Erlotinib 

DB00532 Mephenytoin 

DB00533 Rofecoxib 

DB00535 Cefdinir 

DB00537 Ciprofloxacin 

DB00539 Toremifene 

DB00540 Nortriptyline 

DB00541 Vincristine 

DB00542 Benazepril 

DB00543 Amoxapine 

DB00545 Pyridostigmine 

DB00547 Desoximetasone 

DB00548 Azelaic Acid 

DB00549 Zafirlukast 

DB00550 Propylthiouracil 

DB00554 Piroxicam 

DB00555 Lamotrigine 

DB00558 Zanamivir 

DB00559 Bosentan 

DB00561 Doxapram 

DB00563 Methotrexate 

DB00564 Carbamazepine 

DB00571 Propranolol 

DB00572 Atropine 

DB00573 Fenoprofen 

DB00575 Clonidine 

DB00580 Valdecoxib 

DB00585 Nizatidine 

DB00586 Diclofenac 

DB00590 Doxazosin 

DB00591 Fluocinolone Acetonide

DB00593 Ethosuximide 
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DBID Drug Name 

DB00594 Amiloride 

DB00598 Labetalol 

DB00602 Ivermectin 

DB00603 Medroxyprogesterone 

DB00605 Sulindac 

DB00608 Chloroquine 

DB00611 Butorphanol 

DB00612 Bisoprolol 

DB00615 Rifabutin 

DB00619 Imatinib 

DB00620 Triamcinolone 

DB00621 Oxandrolone 

DB00622 Nicardipine 

DB00623 Fluphenazine 

DB00624 Testosterone 

DB00630 Alendronate 

DB00631 Clofarabine 

DB00633 Dexmedetomidine 

DB00635 Prednisone 

DB00640 Adenosine 

DB00641 Simvastatin 

DB00642 Pemetrexed 

DB00647 Propoxyphene 

DB00650 Leucovorin 

DB00651 Dyphylline 

DB00652 Pentazocine 

DB00654 Latanoprost 

DB00656 Trazodone 

DB00659 Acamprosate 

DB00661 Verapamil 

DB00665 Nilutamide 

DB00668 Epinephrine 

DB00669 Sumatriptan 

DB00672 Chlorpropamide 

DB00673 Aprepitant 

DB00674 Galantamine 

DB00675 Tamoxifen 

DB00678 Losartan 

DBID Drug Name 

DB00679 Thioridazine 

DB00680 Moricizine 

DB00683 Midazolam 

DB00685 Trovafloxacin 

DB00687 Fludrocortisone 

DB00690 Flurazepam 

DB00691 Moexipril 

DB00692 Phentolamine 

DB00694 Daunorubicin 

DB00695 Furosemide 

DB00696 Ergotamine 

DB00697 Tizanidine 

DB00700 Eplerenone 

DB00703 Methazolamide 

DB00704 Naltrexone 

DB00706 Tamsulosin 

DB00708 Sufentanil 

DB00710 Ibandronate 

DB00712 Flurbiprofen 

DB00714 Apomorphine 

DB00715 Paroxetine 

DB00720 Clodronate 

DB00721 Procaine 

DB00724 Imiquimod 

DB00727 Nitroglycerin 

DB00728 Rocuronium 

DB00731 Nateglinide 

DB00733 Pralidoxime 

DB00734 Risperidone 

DB00735 Naftifine 

DB00740 Riluzole 

DB00745 Modafinil 

DB00747 Scopolamine 

DB00749 Etodolac 

DB00750 Prilocaine 

DB00751 Epinastine 

DB00753 Isoflurane 

DB00754 Ethotoin 

DBID Drug Name 

DB00757 Dolasetron 

DB00758 Clopidogrel 

DB00762 Irinotecan 

DB00763 Methimazole 

DB00764 Mometasone 

DB00768 Olopatadine 

DB00772 Malathion 

DB00773 Etoposide 

DB00774 Hydroflumethiazide 

DB00775 Tirofiban 

DB00776 Oxcarbazepine 

DB00780 Phenelzine 

DB00782 Propantheline 

DB00783 Estradiol 

DB00784 Mefenamic acid 

DB00788 Naproxen 

DB00790 Perindopril 

DB00794 Primidone 

DB00795 Sulfasalazine 

DB00796 Candesartan 

DB00798 Gentamicin 

DB00799 Tazarotene 

DB00800 Fenoldopam 

DB00802 Alfentanil 

DB00804 Dicyclomine 

DB00806 Pentoxifylline 

DB00807 Proparacaine 

DB00808 Indapamide 

DB00809 Tropicamide 

DB00810 Biperiden 

DB00811 Ribavirin 

DB00813 Fentanyl 

DB00814 Meloxicam 

DB00818 Propofol 

DB00819 Acetazolamide 

DB00822 Disulfiram 

DB00829 Diazepam 

DB00831 Trifluoperazine 
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DBID Drug Name 

DB00834 Mifepristone 

DB00835 Brompheniramine 

DB00836 Loperamide 

DB00838 Clocortolone 

DB00839 Tolazamide 

DB00841 Dobutamine 

DB00842 Oxazepam 

DB00843 Donepezil 

DB00844 Nalbuphine 

DB00850 Perphenazine 

DB00851 Dacarbazine 

DB00857 Terbinafine 

DB00860 Prednisolone 

DB00861 Diflunisal 

DB00863 Ranitidine 

DB00864 Tacrolimus 

DB00868 Benzonatate 

DB00869 Dorzolamide 

DB00870 Suprofen 

DB00871 Terbutaline 

DB00872 Conivaptan 

DB00873 Loteprednol 

DB00876 Eprosartan 

DB00881 Quinapril 

DB00883 Isosorbide Dinitrate 

DB00884 Risedronate 

DB00887 Bumetanide 

DB00889 Granisetron 

DB00896 Rimexolone 

DB00897 Triazolam 

DB00898 Ethanol 

DB00899 Remifentanil 

DB00900 Didanosine 

DB00903 Ethacrynic acid 

DB00904 Ondansetron 

DB00905 Bimatoprost 

DB00906 Tiagabine 

DB00907 Cocaine 

DBID Drug Name 

DB00908 Quinidine 

DB00909 Zonisamide 

DB00910 Paricalcitol 

DB00912 Repaglinide 

DB00915 Amantadine 

DB00918 Almotriptan 

DB00920 Ketotifen 

DB00921 Buprenorphine 

DB00924 Cyclobenzaprine 

DB00925 Phenoxybenzamine 

DB00927 Famotidine 

DB00929 Misoprostol 

DB00933 Mesoridazine 

DB00937 Diethylpropion 

DB00938 Salmeterol 

DB00949 Felbamate 

DB00952 Naratriptan 

DB00953 Rizatriptan 

DB00959 Methylprednisolone 

DB00960 Pindolol 

DB00961 Mepivacaine 

DB00962 Zaleplon 

DB00963 Bromfenac 

DB00964 Apraclonidine 

DB00966 Telmisartan 

DB00968 Methyldopa 

DB00969 Alosetron 

DB00973 Ezetimibe 

DB00975 Dipyridamole 

DB00978 Lomefloxacin 

DB00979 Cyclopentolate 

DB00980 Ramelteon 

DB00981 Physostigmine 

DB00983 Formoterol 

DB00986 Glycopyrrolate 

DB00988 Dopamine 

DB00989 Rivastigmine 

DB00990 Exemestane 

DBID Drug Name 

DB00991 Oxaprozin 

DB00992 Methyl aminolevulinate

DB00993 Azathioprine 

DB00996 Gabapentin 

DB00997 Doxorubicin 

DB00998 Frovatriptan 

DB00999 Hydrochlorothiazide 

DB01001 Salbutamol 

DB01005 Hydroxyurea 

DB01006 Letrozole 

DB01009 Ketoprofen 

DB01012 Cinacalcet 

DB01013 Clobetasol 

DB01014 Balsalazide 

DB01017 Minocycline 

DB01018 Guanfacine 

DB01019 Bethanechol 

DB01023 Felodipine 

DB01024 Mycophenolic acid 

DB01029 Irbesartan 

DB01030 Topotecan 

DB01032 Probenecid 

DB01035 Procainamide 

DB01036 Tolterodine 

DB01037 Selegiline 

DB01039 Fenofibrate 

DB01041 Thalidomide 

DB01043 Memantine 

DB01047 Fluocinonide 

DB01050 Ibuprofen 

DB01057 Echothiophate 

DB01059 Norfloxacin 

DB01062 Oxybutynin 

DB01064 Isoproterenol 

DB01067 Glipizide 

DB01068 Clonazepam 

DB01069 Promethazine 

DB01073 Fludarabine 
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DBID Drug Name 

DB01076 Atorvastatin 

DB01079 Tegaserod 

DB01083 Orlistat 

DB01085 Pilocarpine 

DB01086 Benzocaine 

DB01087 Primaquine 

DB01088 Iloprost 

DB01091 Butenafine 

DB01095 Fluvastatin 

DB01097 Leflunomide 

DB01098 Rosuvastatin 

DB01100 Pimozide 

DB01101 Capecitabine 

DB01104 Sertraline 

DB01105 Sibutramine 

DB01106 Levocabastine 

DB01109 Heparin 

DB01110 Miconazole 

DB01114 Chlorpheniramine 

DB01115 Nifedipine 

DB01118 Amiodarone 

DB01119 Diazoxide 

DB01120 Gliclazide 

DB01122 Ambenonium 

DB01126 Dutasteride 

DB01128 Bicalutamide 

DB01129 Rabeprazole 

DB01130 Prednicarbate 

DB01132 Pioglitazone 

DB01133 Tiludronate 

DB01136 Carvedilol 

DB01142 Doxepin 

DB01143 Amifostine 

DB01148 Flavoxate 

DB01149 Nefazodone 

DB01151 Desipramine 

DB01156 Bupropion 

DB01157 Trimetrexate 

DBID Drug Name 

DB01158 Bretylium 

DB01159 Halothane 

DB01161 Chloroprocaine 

DB01162 Terazosin 

DB01165 Ofloxacin 

DB01167 Itraconazole 

DB01169 Arsenic trioxide 

DB01173 Orphenadrine 

DB01174 Phenobarbital 

DB01177 Idarubicin 

DB01182 Propafenone 

DB01183 Naloxone 

DB01184 Domperidone 

DB01185 Fluoxymesterone 

DB01186 Pergolide 

DB01189 Desflurane 

DB01193 Acebutolol 

DB01194 Brinzolamide 

DB01195 Flecainide 

DB01196 Estramustine 

DB01197 Captopril 

DB01198 Zopiclone 

DB01200 Bromocriptine 

DB01202 Levetiracetam 

DB01203 Nadolol 

DB01204 Mitoxantrone 

DB01205 Flumazenil 

DB01206 Lomustine 

DB01210 Levobunolol 

DB01214 Metipranolol 

DB01215 Estazolam 

DB01216 Finasteride 

DB01217 Anastrozole 

DB01218 Halofantrine 

DB01219 Dantrolene 

DB01220 Rifaximin 

DB01221 Ketamine 

DB01222 Budesonide 

DBID Drug Name 

DB01223 Aminophylline 

DB01224 Quetiapine 

DB01226 Mivacurium 

DB01229 Paclitaxel 

DB01233 Metoclopramide 

DB01234 Dexamethasone 

DB01236 Sevoflurane 

DB01238 Aripiprazole 

DB01241 Gemfibrozil 

DB01242 Clomipramine 

DB01247 Isocarboxazid 

DB01248 Docetaxel 

DB01250 Olsalazine 

DB01254 Dasatinib 

DB01258 Aliskiren 

DB01260 Desonide 

DB01261 Sitagliptin 

DB01267 Paliperidone 

DB01268 Sunitinib 

DB01273 Varenicline 

DB01275 Hydralazine 

DB01276 Exenatide 

DB01278 Pramlintide 

DB01280 Nelarabine 

DB01291 Pirbuterol 

DB01306 Insulin Aspart 

DB01320 Fosphenytoin 

DB01327 Cefazolin 

DB01337 Pancuronium 

DB01340 Cilazapril 

DB01356 Lithium 

DB01364 Ephedrine 

DB01367 Rasagiline 

DB01373 Calcium 

DB01378 Magnesium 

DB01393 Bezafibrate 

DB01394 Colchicine 

DB01399 Salsalate 
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DBID Drug Name 

DB01400 Neostigmine 

DB01406 Danazol 

DB01409 Tiotropium 

DB01410 Ciclesonide 

DB01427 Amrinone 

DB01558 Bromazepam 

DB01577 Methamphetamine 

DB01586 Ursodeoxycholic acid 

DB01591 Solifenacin 

DB01595 Nitrazepam 

DB01611 Hydroxychloroquine 

DB01612 Amyl Nitrite 

DB01618 Molindone 

DBID Drug Name 

DB01621 Pipotiazine 

DB01623 Thiothixene 

DB02300 Calcipotriol 

DB04835 Maraviroc 

DB04839 Cyproterone 

DB04844 Tetrabenazine 

DB04845 Ixabepilone 

DB04861 Nebivolol 

DB04868 Nilotinib 

DB04896 Milnacipran 

DB04930 Permethrin 

DB05246 Methsuximide 

DB05271 Rotigotine 

DBID Drug Name 

DB06209 Prasugrel 

DB06228 Rivaroxaban 

DB06274 Alvimopan 

DB06287 Temsirolimus 

DB06335 Saxagliptin 

DB06695 Dabigatran etexilate 

DB06698 Betahistine 

DB06699 Degarelix 

DB06700 Desvenlafaxine 

DB06702 Fesoterodine 

DB06710 Methyltestosterone 

DB06711 Naphazoline 

DB06802 Nepafenac 

Drugs were obtained from the DrugBank database2, and their side effects were collected from the 
SIDER database3. 
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Table 2│The keywords used in the filtering of the DrugBank database and their 
occurrences 

Keyword Mark Occurrences 

„cancer”/ 

„lymphoma”/ 

„carcinoma”/ 

„leukemia”/ 

„tumor” 

Anti-cancer 172 

„colon”/ 

„colorectal”/ 

„carcinoma”/ 

„cancer”/ 

„tumor” 

Anti-colorectal 
cancer 

11 

„diabetes mellitus” Anti-diabetes 36 

The keywords are listed which were used in the filtering of the DrugBank database2 and their 
occurrences is noted. The plus sign (+) represents the “AND” logical operator, the slash (/) 
represents the “OR” logical operator. 
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Table 3│Drugs obtained from the DrugBank database, which are used in the treatment of 
colorectal cancer and have no reported side effects in the SIDER database and their target 
proteins 

DrugBank ID Drug Name Drug Target Proteins 

DB00002 Cetuximab 
O75015, P00533, P00736, P02745, P02746, P02747, 
P09871, P12314, P12318, P31994 

DB00112 Bevacizumab 
O75015, P00736, P02745, P02746, P02747, P12314, 
P12318, P31994 

DB00113 Arcitumomab P13688 

DB00544 Fluorouracil P04818 

DB00848 Levamisole P10696, P32297 

DB01269 Panitumumab P00533 

DB01873 Epothilone D 
P04350, P07437, P68363, P68366, P68371, Q13509, 
Q13748, Q71U36, Q9BQE3, Q9H4B7, Q9NY65 

Drugs and their targets were obtained from the DrugBank database2. Only those drugs were 
selected, which are used in the treatment of colorectal cancer and have no reported side effects in 
the SIDER database3. Target proteins for each drug were identified by their UniProt ID9. 
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Table 4│Drugs obtained from the DrugBank database, which are used in the treatment of 
colorectal cancer and have known side effects in the SIDER database and their target 
proteins 

Drugbank ID Drug Name Drug Target Proteins 

DB00650 Leucovorin P04818 

DB00762 Irinotecan P11387 

DB01101 Capecitabine P04818 

DB01157 Trimetrexate P00374 

Drugs and their targets were obtained from the DrugBank database2. Only those drugs were 
selected, which are used in the treatment of colorectal cancer and have known side effects in the 
SIDER database3. Target proteins for each drug were identified by their UniProt ID9. 
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Table 5│Drugs obtained from the DrugBank database, which are used in the treatment of 
type 2 diabetes and have no reported side effects in the SIDER database and their target 
proteins 

DrugBank ID Drug Name Drug Target Proteins 

DB00030 Insulin recombinant
P06213, P06400, P07339, P08069, P14735, P16519, 
P16870, P29120, P48745, P98164, Q16270, Q96C24 

DB00071 Insulin, porcine 
P01906, P06213, P06400, P07339, P08069, P14735, 
P16519, P16870, P29120, P48745, P98164, Q16270, 
Q96C24 

DB00414 Acetohexamide P48048 

DB00722 Lisinopril P12821, Q9BYF1 

DB00914 Phenformin Q13131, Q15842 

DB01124 Tolbutamide P48048, Q09428 

DB01251 Gliquidone Q09428, Q15842 

DB01289 Glisoxepide Q09428, Q15842 

DB01307 Insulin Detemir P06213 

DB01309 Insulin Glulisine P06213 

DB01382 Glycodiazine P48048, Q09428 

DB04876 Vildagliptin P27487 

DB06655 Liraglutide P43220 

Drugs and their targets were obtained from the DrugBank database2. Only those drugs were 
selected, which are used in the treatment of type 2 diabetes and have no reported side effects in 
the SIDER database3. Target proteins for each drug were identified by their UniProt ID9. 
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Table 6│Drugs obtained from the DrugBank database, which are used in the treatment of 
type 2 diabetes and have known side effects in the SIDER database and their target 
proteins 

Drugbank ID Drug Name Drug Target Proteins 

DB00046 Insulin Lispro P06213, P08069 

DB00047 Insulin Glargine P06213, P08069 

DB00178 Ramipril P12821 

DB00197 Troglitazone O60488, P05121, P11474, P37231, P62508, Q99808 

DB00222 Glimepiride P48048, Q09428, Q14654 

DB00412 Rosiglitazone O60488, P37231 

DB00491 Miglitol P10253, Q14697, Q8TET4 

DB00492 Fosinopril P12821 

DB00519 Trandolapril P12821 

DB00731 Nateglinide P37231, Q09428 

DB00834 Mifepristone P04150, P06401 

DB00839 Tolazamide P48048 

DB00881 Quinapril P12821 

DB00912 Repaglinide P37231, Q09428 

DB00966 Telmisartan P30556, P37231 

DB01067 Glipizide P37231, Q09428 

DB01132 Pioglitazone P37231 

DB01261 Sitagliptin P27487 

DB01276 Exenatide P43220 

DB01278 Pramlintide O60894, O60895, O60896 

DB01306 Insulin Aspart P06213 

DB01393 Bezafibrate P37231, Q03181, Q07869 

DB06335 Saxagliptin P27487 

Drugs and their targets were obtained from the DrugBank database2. Only those drugs were 
selected, which are used in the treatment of type 2 diabetes and have known side effects in the 
SIDER database3. Target proteins for each drug were identified by their UniProt ID9. 
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Table 7│Mutated genes in colorectal cancer and their corresponding proteins 

Gene name Protein identifier 

AKT1 P31749 

APC P25054 

BRAF P15056 

CTNNB1 P35222 

EP300 Q09472 

FBXW7 Q969H0 

KRAS P01116 

MADH4 Q13485 

MAP2K4 P45985 

MDM2 Q00987 

MLH1 P40692 

MSH2 P43246 

MSH6 P52701 

PIK3CA P42336 

PIK3R1 P27986 

TCF7L2 Q9NQB0 

TP53 P04637 

VTI1A Q96AJ9 

The 18 mutated genes in colorectal cancer were obtained from the Cancer Gene Census10 and the 
proteins coded by them were mapped by PICR11. 
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Table 8│Mutated genes in type 2 diabetes and their corresponding proteins 

Gene name Protein identifier 

ABCC8 Q54P13 

CAPN10 Q9HC96 

HNF1B Q91910 

GCGR P30082 

TCF7L2 Q9NQB0* 

PPARG O18924 

KCNJ11 O02822 

WFS1 P56695 

HNF1B Q91910 

SLC30A8 Q5I020 

HHEX D2KQB0 

CDKAL1 Q5VV42* 

IGF2BP2 Q9Y6M1* 

CDKN2A O77617 

CDKN2B P42772* 

FTO Q9C0B1* 

JAZF1 Q80ZQ5 

CDC123 A6R687 

CAMK1D Q8IU85* 

TSPAN8 Q2KIS9 

LGR5 Q9Z1P4 

THADA A8C752 

ADAMTS9 Q9P2N4 

NOTCH2 Q04721* 

Gene name Protein identifier 

KCNQ1 P51787* 

IRS1 Q28224 

MTNR1B Q8CIQ6 

PROX1 P48437 

GCKR Q07071 

ADCY5 P30803 

UBE2E2 Q96LR5* 

BCL11A Q9H165* 

GCKR Q07071 

DGKB Q9Y6T7* 

TMEM195 A0JPQ8 

C2CD4B A6NLJ0 

KLF14 Q9ESX2 

ZBED3 Q96IU2 

TP53INP1 Q96A56* 

CHCHD9 Q5T1J5 

CENTD2 Q4LDD4 

HMGA2 P52926* 

HNF1A Q90867 

PRC1 Q94JQ6 

ZFAND6 Q9DCH6 

DUSP9 Q99956* 

The 46 mutated genes in type 2 diabetes were obtained from the article of Parchwani et al.12 and 
the proteins coded by them were mapped by PICR10. From the 46 proteins listed here only 14 
were contained in the human interactome constructed from the STRING database1; those are 
marked with an asterisk (*) in the Table. 
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Table 9│Average human interactome centralities of target proteins of drugs against 
colorectal cancer and type 2 diabetes 

Drug targets without side effects Drug targets with side effects 
Centrality 

type Colorectal 
cancer 

Type 2 
diabetes 

Statistical 
difference

Colorectal 
cancer 

Type 2 
diabetes 

Statistical 
difference

Degree 
(number of 
neighbours) 

24.50 13.00 0.203 40.00 34.00 0.941 

Closeness 
centrality 
(1/edge) 

0.305 0.295 0.330 0.301 0.292 0.572 

Betweenness 
centrality 
(fraction of 
shortest paths 
passing through 
the node) 

1.46E-4 5.76E-4 0.601 3.39E-4 1.28E-4 0.944 

The table shows the medians of the centralities of target proteins of drugs against colorectal 
cancer and type 2 diabetes without or with reported side effects (the results were very similar, if 
instead of medians we used the arithmetic means; data not shown). Centrality values were 
calculated with the Pajek programme6. The human interactome containing 12,439 proteins and 
174,666 edges was built from the STRING database1, 1,726 human drug targets were obtained 
from the DrugBank database2, and the proteins were labelled by their UniProt ID9.  99,423 drug-
side effect pairs were taken from the SIDER database3. Statistical analysis was performed using 
the Wilcoxon rank sum (Mann-Whitney) test function of the R package5. 
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Table 10│Average network distance between drug targets without known side effects used 
in the treatment of colorectal cancer and colorectal cancer-associated proteins 

UniProt ID of colorectal cancer drug targets 
without side effects 

Average network distance from 
colorectal cancer-related proteins 

(edges) 

O75015 2.500 
P00533 1.722 
P00736 2.722 
P02745 2.889 
P02746 3.000 
P02747 3.000 
P04350 2.278 
P07437 2.167 
P09871 3.000 
P10696 3.222 
P12314 2.722 
P12318 2.444 
P13688 2.444 
P31994 2.500 
P32297 3.056 
P68363 2.111 
P68366 2.000 
P68371 2.444 
Q13509 2.722 
Q13748 2.111 
Q71U36 2.111 
Q9BQE3 2.389 
Q9H4B7 2.778 
Q9NY65 2.333 
Mean network distance of drug targets 2.528 
Mean network distance of randomly selected proteins 3.316 

The table shows the average network distance between drug targets without known side effects used in 
the treatment of colorectal cancer and colorectal cancer-related proteins. The total number of drug targets 
without known side effects used in the treatment of colorectal cancer was 24; the total number of 
colorectal cancer-related proteins was 18. Average network distances were calculated as shortest paths 
using the Pajek programme6. Proteins were labelled by their UniProt ID9. The human interactome 
containing 12,439 proteins and 174,666 edges was built from the STRING database1, 1,726 human drug 
targets were obtained from the DrugBank database2 and 99,423 drug-side effect pairs were taken from the 
SIDER database3. Colorectal cancer-related proteins were obtained from the Cancer Gene Census 
database10. Average network distances between colorectal cancer-related proteins and at least 50 
randomly selected samples of 24 proteins each were calculated, and the statistical difference in their mean 
values compared to the average network distance of the 24 drug targets listed above was tested using the 
one-way ANOVA (Analysis of Variance) with linear model fit function of the R package5. There was no 
statistically significant difference between the mean values of the drug targets without known side effects 
and the random samples, F=0.8807, p=0.7078. 
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Table 11│Average network distance between drug targets with known side effects used in 
the treatment of colorectal cancer and colorectal cancer-associated proteins 

UniProt ID of colorectal cancer drug targets with 
side effects 

Average network distance from 
colorectal cancer-related proteins 

(edges) 

P00374 2.500 

P04818 2.556 

P11387 2.111 

Mean network distance of drug targets 2.389 

Mean network distance of randomly selected proteins 3.240 

The table shows the average network distance between drug targets with known side effects used 
in the treatment of colorectal cancer and colorectal cancer-related proteins. The total number of 
drug targets with known side effects used in the treatment of colorectal cancer was 3; the total 
number of colorectal cancer-related proteins was 18. Average network distances were calculated 
as shortest paths using the Pajek programme6. Proteins were labelled by their UniProt ID9. The 
human interactome containing 12,439 proteins and 174,666 edges was built from the STRING 
database1, 1,726 human drug targets were obtained from the DrugBank database2 and 99,423 
drug-side effect pairs were taken from the SIDER database3. Colorectal cancer-related proteins 
were obtained from the Cancer Gene Census database10. Average network distances between 
colorectal cancer related proteins and at least 50 randomly selected samples of 3 proteins each 
were calculated, and the statistical difference in their mean values compared to the average 
network distance of the 3 drug targets listed above was tested using the one-way ANOVA 
(Analysis of Variance) with linear model fit function of the R package5. There was no 
statistically significant difference between the mean values of the drug targets with known side 
effects and the random samples, F=1.223, p=0.1951. 
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Table 12│Average network distance between drug targets without known side effects used 
in the treatment of type 2 diabetes and diabetes-associated proteins 

UniProt ID of type 2 diabetes drug targets without 
side effects 

Average network distance from 
diabetes-related proteins (edges) 

P01906 3.786 
P06400 2.286 
P07339 3.000 
P14735 3.214 
P16519 3.786 
P16870 3.286 
P29120 3.143 
P48745 3.214 
P98164 3.000 
Q13131 2.929 
Q15842 3.714 
Q16270 3.143 
Q96C24 3.500 
Q9BYF1 3.500 
Mean network distance of drug targets 3.250 
Mean network distance of randomly selected proteins 3.413 

The table shows the average network distance between drug targets without known side effects 
used in the treatment of type 2 diabetes and diabetes-related proteins. The total number of drug 
targets without known side effects used in the treatment of type 2 diabetes was 14; the total 
number of type 2 diabetes-related proteins contained in the human interactome was 14. Average 
network distances were calculated as shortest paths using the Pajek programme6. Proteins were 
labelled by their UniProt ID9. The human interactome containing 12,439 proteins and 174,666 
edges was built from the STRING database1, 1,726 human drug targets were obtained from the 
DrugBank database2 and 99,423 drug-side effect pairs were taken from the SIDER database3. 
Type 2 diabetes-related proteins were obtained from the article of Parchwani et al.12. Average 
network distances between type-2 diabetes related proteins and at least 50 randomly selected 
samples of 14 proteins each were calculated, and the statistical difference in their mean values 
compared to the average network distance of the 14 drug targets listed above was tested using the 
one-way ANOVA (Analysis of Variance) with linear model fit function of the R package5. There 
was no statistically significant difference between the mean values of the drug targets without 
known side effects and the random samples, F=0.7867, p=0.8547. 
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Table 13│Average network distance between drug targets with known side effects used in 
the treatment of type 2 diabetes and diabetes-associated proteins 

UniProt ID of type 2 diabetes drug targets with side 
effects 

Average network distance from 
diabetes-related proteins (edges) 

O60488 3.643 
O60894 3.857 
O60895 3.857 
O60896 3.429 
P04150 2.429 
P05121 2.857 
P06213 2.643 
P06401 2.500 
P08069 2.571 
P10253 3.786 
P11474 3.000 
P12821 3.786 
P27487 3.500 
P30556 3.000 
P37231 2.643 
P43220 3.071 
P48048 3.214 
P62508 3.071 
Q03181 2.857 
Q07869 2.714 
Q09428 3.500 
Q14654 3.286 
Q14697 3.357 
Q8TET4 3.929 
Q99808 4.357 
Mean network distance of drug targets 3.234 
Mean network distance of randomly selected proteins 3.443 

The table shows the average network distance between drug targets with known side effects used in the 
treatment of type 2 diabetes and diabetes-related proteins. The total number of drug targets with known 
side effects used in the treatment of type 2 diabetes was 25; the total number of type 2 diabetes-related 
proteins contained in the human interactome was 14. Average network distances were calculated as 
shortest paths using the Pajek programme6. Proteins were labelled by their UniProt ID9. The human 
interactome containing 12,439 proteins and 174,666 edges was built from the STRING database1, 1,726 
human drug targets were obtained from the DrugBank database2 and 99,423 drug-side effect pairs were 
taken from the SIDER database3. Type 2 diabetes-related proteins were obtained from the article of 
Parchwani et al.12. Average network distances between type-2 diabetes related proteins and at least 50 
randomly selected samples of 25 proteins each were calculated, and the statistical difference in their mean 
values compared to the average network distance of the 25 drug targets listed above was tested using the 
one-way ANOVA (Analysis of Variance) with linear model fit function of the R package5. There was no 
statistically significant difference between the mean values of the drug targets with known side effects 
and the random samples, F= 0.9021, p= 0.6677. 
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