449 research outputs found

    Taxonomy and palaeoecology of continental Gastropoda (Mollusca) from the Late Pleistocene mammoth-bearing site of Bullendorf in NE Austria

    Get PDF
    We present a taxonomic and palaeoecological analysis of a continental mollusc fauna from a mammoth-bearing succession near Bullendorf in Lower Austria. The taxonomic analysis comprises morphological descriptions and SEM documentation of 15 Pleistocene gastropod species. A Principal Component Analysis of the quantitative and qualitative composition of the investigated samples reveals a stratigraphic succession of four mollusc assemblages defined herein as Galba truncatula assemblage, Succinella oblonga assemblage, Pupilla muscorum/loessica and Pupilla alpicola/sterrii assemblages. The autecological requirements of the species of each assemblage allow a reconstruction of the palaeoenvironmental history of the section with alternating dry and humid conditions within a general cooling trend. Despite generally low mollusc density and species richness, the Bullendorf site allows important insight into latest Quaternary regional environmental conditions and climate. Based on the comparison with similar mollusc sites across Europe, a biostratigraphic correlation with the Late Pleistocene (~110\u201312 ka) is propose

    Post-rift sequence architecture and stratigraphy in the Oligo-Miocene Sardinia rift (Western Mediterranean Sea)

    Get PDF
    Rift basins provide important sedimentary archives to reconstruct past tectonic and climatic conditions. Understanding their sedimentary history is, however, largely hampered by the competing influence of tectonic versus climatic forcing. The aim of this study is to comprehend the effects of local to regional tectonic and global climatic/eustatic changes on shallow marine depositional systems in the Sardinia Rift (Western Mediterranean Sea). For this purpose the stratigraphic and depositional relations of a mixed siliciclastic-carbonate ramp at the Porto Torres Basin margin were studied along extensive proximal to distal transects. Three depositional sequences (DS1 to DS3) of late Burdigalian to early Serravallian age have been identified, which are separated by erosional unconformities. Each contains a lower trans- gressive part and an upper regressive part. The former includes shoreface sandstone (DS2) or coral reef (DS3) deposits on the proximal ramp and channelized sheet sandstone (DS1) or basinal mudstone (DS2, DS3) deposits on the distal ramp, typically recording an upsection trend of sediment starvation. The latter is represented by basinward-prograding coralline red algal carbonate wedges due to enhanced shallow water carbonate production rates. In the long term, the depositional evolution from DS1 to DS3 reveals basin margin progradation associated with decreasing siliciclastic supply. Integrated calcareous nannoplankton-foraminiferal-pectinid biostratigraphy links the depositional sequences to third-order sea-level cycles and allows to correlate the erosional unconformities at the top of DS1 and DS2 with the Bur 5/Lan 1 and Lan 2/Ser 1 sequence boundaries. The improved sequence stratigraphic framework enables better regional and global correlations. This shows that rhodalgal carbonate slopes started prograding in the western branch of the Sardinia Rift during the late Burdigalian because (1) of a worldwide bloom of rhodalgal facies, and (2) decreasing tectonic activity at the transition from the syn- rift to the post-rift stage caused a continuous reduction of the siliciclastic sediment input

    Coastal landscape evolution in the Wilpattu National Park (NW Sri Lanka) linked to changes in sediment supply and rainfall across the Pleistocene–Holocene transition

    Get PDF
    Coastal sand dunes are sediment archives which can be used to reconstruct periods of aridity and humidity, past wind strength and variations in the sediment supply related to sea-level changes. In this manner, the sedimentary record of fossil coastal dunes in Sri Lanka provides evidence for environmental and climatic changes during the late Pleistocene and Holocene. As yet, these environmental shifts are poorly resolved because the sedimentary facies and their depositional architecture have not been studied and only very few age constraints are available. Facies analysis of a lithological section at the Point Kurdimalai sea cliff in the Wilpattu National Park (NW Sri Lanka) reveals a striking resemblance to the stratigraphic succession associated with the Teri Sands in southeastern India, which is better dated. The reason is that deposition occurred under the same geological, climatic and geomorphological conditions in the two regions. This special situation allows for litho- and climate stratigraphic correlations across the Gulf of Mannar and links the landscape evolution at Point Kudrimalai to late Quaternary climatic events and sea-level changes. Our results show that the formation of red coastal dunes (Red Beds) in Sri Lanka was a multi-phase process across the Pleistocene–Holocene boundary and hence the differentiation between an Older Group of Plio-Pleistocene age (including the Red Beds) and a Younger Group of Holocene age in the Quaternary stratigraphic chart for Sri Lanka is not justified

    Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea

    Get PDF
    We present previously unknown stacked bowl-shaped bioherms reaching a size of 45 cm in diameter and 40 cm in height from weakly solidified peloidal sand from the upper Sarmatian of the Paratethys Sea. The bioherms were mostly embedded in sediment, and the “growth stages” reflect a reaction on sediment accretion and sinking into the soft sediment. The bioherms are spirorbid–microclot–acicular cement boundstones with densely packed Janua tubes surrounded by microclots and acicular cement solidifying the bioherm. The surrounding sediment is a thrombolite made of peloids and polylobate particles (mesoclots) which are solidified synsedimentarily by micrite cement and dog-tooth cement in a later stage. The shape of the bioherms reflects a series of growth stages with an initial stage (“start-up stage”) followed by a more massive “keep-up stage” which grades into a structure with a collar-like outer rim and a central protrusion and finally by a termination of growth (“give-up stage”). The setting was a shallow subtidal environment with normal marine or elevated saline, probably oligotrophic, conditions with an elevated alkalinity. The stacked bowl-shaped microbialites are a unique feature that has so far been undescribed. Modern and Neogene microbialite occurrences are not direct analogues to the described structures, but the marine examples, like in The Bahamas, Shark Bay and the Persian Gulf, offer insight into their microbial composition and environmental parameters. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the Paratethys Sea during the late Middle Miocene, which was characterized by a warm, arid climate.</p

    New paleoenvironmental insights on the Miocene condensed phosphatic layer of Salento (southern Italy) unlocked by the coral-mollusc fossil archive

    Get PDF
    From the Late Oligocene to the Late Miocene, the central Mediterranean area was characterized by the extensive deposition of phosphate-rich sediments. They are usually represented by 10 to 20-cm-thick hardgrounds made of phosphatic and glauconitic sediments containing a rich macrofossil association. This study represents the first thorough investigation of the biotic assemblage of Mediterranean phosphorites aimed at collecting new information on the environmental factors controlling their deposition. The Serravallian/Tortonian phosphatic deposits of the Salento Peninsula (“Aturia level”) have been selected for the abundance of fossil remains and special attention is given to the coral–mollusc association. Two different facies have been recognized: a basal coral rudstone that includes most of the macrofossils, superimposed by a detrital rudstone made of thin layers mainly composed of phosphatic fragments. These two facies are separated by a phosphatic crust several millimeters in thickness. The coral assemblage contains at least 17 azooxanthellate taxa belonging to four families, while the molluscs are represented by a rich gastropod fauna (26 species), associated with bivalves (18 species) and cephalopods (two species). Four distinct depositional phases have been recognized, with the coral rudstone representing the key-facies to reconstruct the onset of the “Aturia level” and the original environment of its fossil content. The composition of the coral–mollusc association has been reliably compared with present-day analog taxa, suggesting the occurrence of a heterogeneous seafloor formed by rocky substrates and accumulations of soft sediment, at around 100–350-m water depth, and under the influence of moderate-to-strong bottom currents rich in nutrients and resuspended organic matter

    Evolution, turnovers and spatial variation of the gastropod fauna of the late Miocene biodiversity hotspot Lake Pannon

    Get PDF
    AbstractLake Pannon constituted the biggest hotspot of biodiversity in the late Cenozoic of Europe, comprising a total diversity of almost 600 gastropod species. The gastropod fauna of this huge brackish system, which existed over about seven million years from the late Miocene to earliest Pliocene within the Pannonian Basin System, has been well documented by a great many of taxonomic works. In contrast, the faunal development within the lake has not been properly addressed from a statistical point of view. The present investigation demonstrates that species were not homogeneously distributed across space and time, generating uneven and temporally shifting patterns of species richness and degree of point endemism across the lake. The faunal compositions of the time intervals analyzed were highly different, contrasting simple species accumulation as suggested by the overall numbers. Shifting patterns of local diversity within the lake reflect changing paleo-shorelines, resulting from prograding river systems entering and successively diminishing the lake surface area. As mainly herbivorous grazers and predominantly shallow-water inhabitants, the gastropods traced the moving shelf margins and vegetation belts accordingly, producing the observed diversity shifts. In addition, each time interval is characterized by a high degree of provincialism, which is considered to reflect high habitat diversity. This claim is supported by the complex subaqueous topography and the presence of extensive delta plains produced by the incoming river systems. A potential driver for provincialism might be the adaptation of species to distinct water depths (and related parameters). Finally, the notable differences among the faunal compositions of the upper Pannonian strata and the succeeding lower Viviparus beds, especially regarding family-level, indicate an environmental turnover at the transition. Brackish-water species are mostly replaced by typical freshwater elements, indicating strong fluvial influence. Based on our results and latest stratigraphic data, we conclude that the Viviparus beds were deposited in a different environment, replacing Lake Pannon in the southern Pannonian Basin in the early Pliocene

    The Sarmatian/Pannonian boundary at the western margin of the Vienna Basin (City of Vienna, Austria)

    Get PDF
    Abstract Sarmatian and Pannonian cores, drilled at the western margin of the Vienna Basin in the City of Vienna, reveal a complex succession of marine and lacustrine depositional environments during the middle to late Miocene transition. Two Sarmatian and two Pannonian transgressive-regressive sequences were studied in detail. Identical successions of benthic faunal assemblages and similar patterns in magnetic susceptibility logs characterise these sequences. This allows a correlation of the boreholes over a distance of ~3.5 km across one of the major marginal faults of the Vienna Basin. Biostratigraphic data, combined with rough estimates of sedimentation rates, reveal large gaps between these sequences, suggesting that only major transgressions reached this marginal area. In particular, during the Sarmatian-Pannonian transition, the basin margin completely emerged and turned into a terrestrial setting for at least 600 ka
    • …
    corecore