3,786 research outputs found
The LHCb trigger and data acquisition system
The LHCb experiment is the most recently approved of the 4 experiments under construction at CERNs LHC accelerator. It is a special purpose experiment designed to precisely measure the CP violation parameters in the B-B system. Triggering poses special problems since the interesting events containing B-mesons are immersed in a large background of inelastic p-p reactions. We therefore decided to implement a 4 level triggering scheme. The LHCb Data Acquisition (DAQ) system will have to cope with an average trigger rate of ~40 kHz, after two levels of hardware triggers, and an average event size of ~100 kB. Thus an event-building network which can sustain an average bandwidth of 4 GB/s is required. A powerful software trigger farm will have to be installed to reduce the rate from the 40 kHz to ~100 Hz of events written to permanent storage. In this paper we outline the general architecture of the Trigger and DAQ system and the readout protocols we plan to implement. First results of simulations of the behavior of the event- building network implementations under the expected traffic patterns are presented. (8 refs)
Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in the Laboratory
We report on experiments in which magnetically driven radiatively cooled
plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed
power facility. The jets were driven by the pressure of a toroidal magnetic
field in a ''magnetic tower'' jet configuration. This scenario is characterized
by the formation of a magnetically collimated plasma jet on the axis of a
magnetic ''bubble'', confined by the ambient medium. The use of a radial
metallic foil instead of the radial wire arrays employed in our previous work
allows for the generation of episodic magnetic tower outflows which emerge
periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate
with velocities reaching ~300 km/s and interact with previous eruptions leading
to the formation of shocks.Comment: 6 pages, 5 figures. Accepted for publication in Astrophysics & Space
Scienc
Overestimates of Survival after HAART: Implications for Global Scale-Up Efforts
Background: Monitoring the effectiveness of global antiretroviral therapy scale-up efforts in resource-limited settings is a global health priority, but is complicated by high rates of losses to follow-up after treatment initiation. Determining definitive outcomes of these lost patients, and the effects of losses to follow-up on estimates of survival and risk factors for death after HAART, are key to monitoring the effectiveness of global HAART scale-up efforts. Methodology/Principal Findings: A cohort study comparing clinical outcomes and risk factors for death after HAART initiation as reported before and after tracing of patients lost to follow-up was conducted in Botswana's National Antiretroviral Therapy Program. 410 HIV-infected adults consecutively presenting for HAART were evaluated. The main outcome measures were death or loss to follow-up within the first year after HAART initiation. Of 68 patients initially categorized as lost, over half (58.8%) were confirmed dead after tracing. Patient tracing resulted in reporting of significantly lower survival rates when death was used as the outcome and losses to follow-up were censored [1-year Kaplan Meier survival estimate 0.92 (95% confidence interval, 0.88–0.94 before tracing and 0.83 (95% confidence interval, 0.79–0.86) after tracing, log rank P<0.001]. In addition, a significantly increased risk of death after HAART among men [adjusted hazard ratio 1.74 (95% confidence interval, 1.05–2.87)] would have been missed had patients not been traced [adjusted hazard ratio 1.41 (95% confidence interval, 0.65–3.05)]. Conclusions/Significance: Due to high rates of death among patients lost to follow-up after HAART, survival rates may be inaccurate and important risk factors for death may be missed if patients are not actively traced. Patient tracing and uniform reporting of outcomes after HAART are needed to enable accurate monitoring of global HAART scale-up efforts
The Visible Imaging System (VIS) for the Polar Spacecraft
The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N+2 at 391.4 nm, 0 I at 557.7 and 630.0 nm, H I at 656.3 nm, and 0 II at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8 R(sub e). The time to acquire and telemeter a 256 x 256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with the in-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for the in-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions
A Class of Topological Actions
We review definitions of generalized parallel transports in terms of
Cheeger-Simons differential characters. Integration formulae are given in terms
of Deligne-Beilinson cohomology classes. These representations of parallel
transport can be extended to situations involving distributions as is
appropriate in the context of quantized fields.Comment: 41 pages, no figure
The levels of Brachyspira hyodysenteriae binding to porcine colonic mucins differ between individuals, and binding is increased to mucins from infected pigs with de novo MUC5AC synthesis
Brachyspira hyodysenteriae colonizes the pig colon, resulting in mucohemorrhagic diarrhea and growth retardation. Fecal mucus is a characteristic feature of swine dysentery; therefore, we investigated how the mucin environment changes in the colon during infection with B. hyodysenteriae and how these changes affect this bacterium's interaction with mucins. We isolated and characterized mucins, the main component of mucus, from the colon of experimentally inoculated and control pigs and investigated B. hyodysenteriae binding to these mucins. Fluorescence microscopy revealed a massive mucus induction and disorganized mucus structure in the colon of pigs with swine dysentery. Quantitative PCR (qPCR) and antibody detection demonstrated that the mucus composition of pigs with swine dysentery was characterized by de novo expression of MUC5AC and increased expression of MUC2 in the colon. Mucins from the colon of inoculated and control pigs were isolated by two steps of isopycnic density gradient centrifugation. The mucin densities of control and inoculated pigs were similar, whereas the mucin quantity was 5-fold higher during infection. The level of B. hyodysenteriae binding to mucins differed between pigs, and there was increased binding to soluble mucins isolated from pigs with swine dysentery. The ability of B. hyodysenteriae to bind, measured in relation to the total mucin contents of mucus in sick versus healthy pigs, increased 7-fold during infection. Together, the results indicate that B. hyodysenteriae binds to carbohydrate structures on the mucins as these differ between individuals. Furthermore, B. hyodysenteriae infection induces changes to the mucus niche which substantially increase the amount of B. hyodysenteriae binding sites in the mucus
- …