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Abstract 25 

Brachyspira hyodysenteriae colonizes the pig colon resulting in mucohemorrhagic diarrhea and 26 

growth retardation. Fecal mucus is a characteristic feature of swine dysentery; therefore we 27 

investigated how the mucin environment changes in the colon during infection with B. 28 

hyodysenteriae, and how these changes affect this bacterium’s interaction with mucins. We 29 

isolated and characterized mucins, the main component of mucus, from the colon of 30 

experimentally inoculated and control pigs, and investigated B. hyodysenteriae binding to these 31 

mucins. Fluorescence microscopy revealed a massive mucus induction and disorganized mucus 32 

structure in the colon of pigs with swine dysentery. qPCR and antibody detection demonstrated 33 

that the mucus composition of pigs with swine dysentery was characterized by de novo 34 

expression of MUC5AC and increased expression of MUC2 in the colon. Mucins from colon of 35 

inoculated and control pigs were isolated by two-steps of isopycnic density-gradient 36 

centrifugation. The mucin density was similar between control and inoculated pigs, whereas the 37 

mucin quantity was five-fold higher during infection. B. hyodysenteriae bound to mucins in a 38 

manner that differed between pigs and there was increased binding to soluble mucins isolated 39 

from pigs with swine dysentery. The B. hyodysenteriae binding ability, in relation to the total 40 

mucin content of mucus from sick vs. healthy pigs, increased seven-fold during infection. 41 

Together, the results indicate that B. hyodysenteriae binds to carbohydrate structures on the 42 

mucins, as these differ between individuals. Furthermore, B. hyodysenteriae infection induces 43 

changes to the mucus niche, which substantially increases the amount of B. hyodysenteriae 44 

binding sites in the mucus. 45 

 46 

 47 

 48 
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Introduction 49 

The gastrointestinal tract is lubricated by a continuously secreted mucus layer which can also act 50 

as a barrier against pathogens (1). The main components of the mucus layer are heavily 51 

glycosylated gel-forming mucins. Mucin glycans can prevent enzymatic degradation of the 52 

mucin protein core, and can also bind water, conferring viscoelasticity (2). Underneath the 53 

mucus layer, transmembrane mucins on the mucosal epithelial cells provide barrier and reporting 54 

functions (3, 4). Mucins differ in their glycosylation and tissue distribution (5). Murine colonic 55 

mucus has been shown to be rich in the MUC2 mucin, which is secreted by goblet cells and is 56 

organized in a two-layered mucus system (6). The inner mucus layer is firmly attached to the 57 

epithelium, and gives rise to the loosely adherent outer layer (7). 58 

 59 

Mucins are a dynamic component of the mucosal barrier, and have been shown to undergo 60 

changes in response to intestinal infection and inflammation in mice (8, 9). Mucin glycan 61 

structures can bind bacteria, e.g. Escherichia coli and Helicobacter pylori, limiting colonization 62 

and access to the epithelial surface (3, 10-13). Mucin glycosylation can change during bacterial 63 

infection, and varies between individuals (14). To date it is unknown whether the large 64 

variability in mucin expression and mucin glycosylation arose by chance during evolution, or if 65 

the mucin species confer distinct response properties during infection. 66 

 67 

Brachyspira hyodysenteriae (B. hyodysenteriae) is a recognized swine pathogen, commonly 68 

associated with swine dysentery (SD). This anaerobic spirochete colonizes the large intestine of 69 

pigs resulting in mucohemorrhagic diarrhea. Ingestion of feces from inoculated pigs, as well as 70 

from asymptomatic carriers, is among the main sources of infection (15). SD is responsible for 71 

economic losses in the swine industry, posing a threat in countries where antimicrobials are 72 
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banned for growth promotion, and challenging those where resistant strains have emerged (16-73 

19). The presence of mucus in the feces is a characteristic feature of SD. Recently, colonic 74 

specimens from pigs with SD were shown to have increased immunohistochemical staining with 75 

an antibody against the human MUC5AC mucin and decreased staining with an antibody against 76 

the MUC4 mucin (20). 77 

 78 

B. hyodysenteriae pathogenesis is still surrounded by many uncertainties. The mechanisms 79 

underlying the bacterial interactions with the colonic mucosal surface, or how the mucin 80 

response exerted during infection is regulated, remain to be elucidated. Therefore, the overall 81 

aims of the present study were to investigate how the mucin environment changes in the swine 82 

colon during infection with B. hyodysenteriae; if this bacterium binds to mucins, and if so, how 83 

these changes affect binding. We identified that B. hyodysenteriae infection causes changes in 84 

mucus organization, mucin quantity, identity and expression profile, as well as in the mucin 85 

binding ability of this bacterium. 86 

 87 

Materials and Methods 88 

Ethics statement 89 

The animal experiments were approved by the ethical committee of the Faculty of Veterinary 90 

Medicine, Ghent University (EC2012/01 and EC2013/147) and complied with all ethical and 91 

husbandry regulations. 92 

 93 

Experimental inoculation and sample collection 94 

Samples from a total of 15 pigs (Danish Large White × Piétrain) from two independent 95 

inoculation experiments, 21 months apart, were included in the study (Table 1). The first 96 
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experiment included 6 control pigs and 6 inoculated pigs, and the second 8 control pigs and 8 97 

inoculated pigs. The pigs from both inoculation experiments were 6-week old, came from two 98 

different commercial farrowing to finishing farms in the Flanders region with no previous history 99 

of swine dysentery, belonged to different litters, and were fed the same commercial starter feed 100 

(crude protein 17%, crude fat 6.09%, crude fiber 3.87%, crude ash 5.09%, phosphorus 0.49%, 101 

methionine 0.43%, lysine 1.25%, calcium 0.61%, and sodium 0.23%; Lambers-Seghers, 102 

Belgium). At their arrival, the pigs were confirmed negative for B. hyodysenteriae in rectal fecal 103 

samples by culture and qPCR. The pigs were acclimatized for two weeks in order to recover 104 

from transport stress and adapt to diet and housing changes. The pigs were fed twice per day and 105 

had ad libitum access to water. A total of 14 pigs were experimentally inoculated with B. 106 

hyodysenteriae strain 8dII, isolated from a Belgian swine farm with a history of recent dysentery 107 

problems. An inoculum of 108 CFU/ml in brain heart infusion broth (BHI) (50 ml/pig) was 108 

administered orally during three consecutive days, while 14 control pigs received 50 ml of sterile 109 

BHI. From the 14 control pigs, 6 samples were randomly selected for use in this study (pigs A-110 

F).  From the first infection trial two out of six pigs developed SD, and from the second infection 111 

trial three out of eight pigs developed SD (pigs 1-5). Samples from the four inoculated pigs that 112 

did not develop SD in the first inoculation experiment were included in the study (pigs 6-9; 113 

Table 1). 114 

 115 

Infection was confirmed based on clinical signs of mucohemorrhagic diarrhea, and B. 116 

hyodysenteriae excretion in feces detected by qPCR in fecal samples obtained twice a week. The 117 

pigs were sacrificed at day 40 post-inoculation by anesthesia with a combination of xylazine at 118 

4.4 mg/kg (Xyl-M 2%®, VMD, Arendonk, Belgium) and zolazepam/tiletamine at 2.2 mg/kg 119 

(Zoletil® 100, Virbac, Carros, France), and final euthanasia by intracardial injection of a 120 
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formulation comprising embutramide, mebezonium iodide and tetracaine (T61®, Intervet, 121 

Brussels, Belgium) at 0.3 ml/kg. 122 

 123 

Midsection samples of the spiral colon with a size of 7 × 8 cm were obtained from the inoculated 124 

and control pigs for mucin isolation. Fecal material was removed, and the tissues were rinsed 125 

with phosphate buffered saline (PBS) and a protease inhibitor cocktail (Roche Diagnostics, 126 

Mannheim, Germany) before snap freezing and storage at -80°C. Smaller specimens were 127 

carefully collected without disturbing the mucus layer (no washing) and immersed in 10-volumes 128 

of fresh Carnoy’s methanol fixative (60% dry methanol, 30% chloroform, 10% glacial acetic 129 

acid), and embedded in wax for histology/immunohistochemistry. There were also samples 130 

collected in RNAlater® (Life Technologies, Carlsbad, CA, USA) and kept at 4ºC overnight, then 131 

stored at -80ºC for RNA extraction. 132 

 133 

Detection of B. hyodysenteriae in feces by qPCR 134 

DNA from pig feces was obtained by using the QIAamp DNA stool mini kit (Qiagen, CA, USA) 135 

starting from 1 gram of feces. For qPCR, Brachyspira spp. specific primers were used in 136 

combination with a B. hyodysenteriae specific probe as previously described (21). 137 

 138 

MUC2 and MUC5AC immunofluorescence 139 

Tissue sections were deparaffinized and antigen retrieval was performed in 10 mM sodium 140 

citrate, pH 6.0 at 99°C for 30 min. Slides were cooled to room temperature and washed in PBS. 141 

Non-specific background was blocked with serum-free protein block (DAKO, Carpinteria, CA, 142 

USA) for 20 min. Primary antibodies anti-MUC2C3 (kindly provided by G. Hansson, University 143 

of Gothenburg, Sweden), anti-MUC5AC (45M1, Sigma-Aldrich, St. Louis, MO, USA) and anti-144 
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MUC5CR (kindly provided by G. Hansson, University of Gothenburg, Sweden) were diluted 145 

1/1000 and incubated at 4°C overnight. Sections were washed with PBS and incubated with 146 

secondary antibodies conjugated with Alexa Fluor 488 (Life Technologies, Eugene, OR, USA) 147 

for MUC2, and Alexa Fluor 594 for MUC5AC, diluted 1/500 for 1 h. After washing in PBS, 148 

specimens were mounted with ProLong® antifade containing DAPI (Life Technologies, Eugene, 149 

OR, USA). Pig and human gastric specimens were used as positive controls for MUC5AC 150 

staining. Similarities in the stomach and colon binding patterns indicated the staining of pig 151 

sections was specific, even though the antibodies were raised against human mucins. 152 

 153 

qPCR for mucin expression 154 

Pig colon tissue samples were immediately submerged in a 10-fold volume of RNAlater® (Life 155 

Technologies, Carlsbad, CA, USA) at 4°C overnight, and frozen at -80°C until RNA extraction. 156 

Isolation of RNA was performed using Trizol (Life Technologies, Carlsbad, CA, USA) 157 

according to the manufacturer's instructions. RNA yield and purity was assessed through UV 158 

spectroscopy (NanoDrop, Thermo Scientific, MA, USA). Total RNA (5 µg) was DNase treated 159 

at 37°C for 45 min, followed by the addition of 5 mM ethylenediaminetetraacetic acid (EDTA) 160 

and heat inactivation of DNase at 75°C for 10 min prior to cDNA synthesis. MgCl2 was added to 161 

a 5 mM final concentration, and this RNA was used for cDNA synthesis with random hexamers 162 

and Superscript III (Life Technologies, Carlsbad, CA, USA) at 50°C for 2 h. The cDNA was 163 

used in a real-time PCR reaction using SYBR green (Power SYBR® green mix, Life 164 

Technologies, Carlsbad, CA, USA) and primers listed in Table 2. Primers for pig MUC1, MUC2, 165 

and MUC5AC mucin genes were designed using the Primer3 program (available at 166 

http://frodo.wi.mit.edu/primer3/). qPCR data were normalized using the expression levels of 167 

ACTB and RPL4 reference genes (22). Samples were amplified in triplicate, and a negative 168 

http://frodo.wi.mit.edu/primer3/
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control without reverse transcriptase was included to verify the absence of contaminating 169 

genomic DNA. Data acquisition and analysis was performed using the CFX manager 3.1 170 

software (Bio-Rad Laboratories Inc., Hercules, CA, USA). 171 

 172 

Mucin isolation and purification 173 

Mucin isolation of colon tissue samples was performed by isopycnic density gradient 174 

centrifugation as previously described (23), obtaining guanidinium hydrochloride (GuHCl) 175 

soluble and insoluble mucins. Briefly, frozen tissues were drenched with 10 mM sodium 176 

phosphate buffer, pH 6.5, containing 0.1 mM phenylmethylsulfonyl fluoride (AppliChem, 177 

Darmstadt, Germany). Once thawed, the mucosal surfaces were scraped with a microscope slide, 178 

dispersed with a Dounce homogenizer, and stirred slowly overnight at 4°C in ice-cold extraction 179 

buffer consisting of 6 M GuHCl (AppliChem, Darmstadt, Germany), 5 mM EDTA (Sigma-180 

Aldrich, St. Louis, MO, USA), 5 mM N-ethylmaleimide (Alfa Aesar, Karlsruhe, Germany) and 181 

10 mM sodium di-hydrogen phosphate at pH 6.5. GuHCl soluble mucins were obtained after 182 

centrifugation at 23000 × g for 50 min at 4°C and the remaining material was re-extracted twice 183 

by stirring overnight at 4°C in extraction buffer. The remaining pellets contained the “insoluble” 184 

mucins, which were solubilized with 10 mM dithiothreitol (DTT) in reduction buffer (6 M 185 

GuHCl, 5 mM EDTA, 0.1 M Tris/HCl, pH 8) for 5 h at 37°C. Finally, residues were alkylated 186 

overnight with 25 mM iodoacetamide (IAA, Alfa Aesar, Karlsruhe, Germany). 187 

 188 

Both the GuHCl soluble and insoluble material was dialyzed in ten volumes of extraction buffer 189 

at 4°C, changing the dialysis solution three times in 24 h. An isopycnic density-gradient 190 

centrifugation in cesium chloride (CsCl)/4 M GuHCl with a starting density of 1.39 g/ml was 191 

performed at 40000 rpm for 90 h. The mucin containing fractions were pooled and further 192 
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purified from DNA by a second gradient in CsCl/0.5 M GuHCl. Approximately 25 mucin 193 

fractions were recovered per sample using a fraction collector equipped with a drop counter. 194 

Fractions were stored at 4°C until further analysis. 195 

 196 

Analysis of mucin fractions 197 

First and second CsCl gradient mucin fractions were analyzed as follows. The mucin density was 198 

determined by weighing a known volume using a Carlsberg pipette as a pycnometer, results were 199 

expressed as g/ml. DNA contamination of mucins were determined using a spectrophotometer. A 200 

microtiter-based assay detecting carbohydrates as periodate-oxidizable structures (24) was 201 

performed in order to determine the glycan content in the GuHCl soluble and insoluble mucin 202 

samples. Briefly, Nunc® 96-well plates (Thermo Scientific, Waltham, MA, USA) were coated 203 

overnight at 4°C with mucin fractions diluted in 4 M and 0.5 M GuHCl. Plates were incubated 204 

with a 25 mM sodium metaperiodate solution diluted in sodium acetate (NaAc) for 20 min, and 205 

blocked with 50 mM Tris-HCl, 0.15 M NaCl, 90 µM CaCl2, 4 µM EDTA, 0.01% NaN3 and 2 % 206 

bovine serum albumin, at pH 8 for 1 h. The wells were then incubated for 1 h with a biotin 207 

hydrazid solution diluted 1/50 in NaAc, followed by europium labeled streptavidin diluted 208 

1/1000 in DELFIA® Assay buffer (PerkinElmer, Waltham, MA, USA). Finally, plates were 209 

incubated with DELFIA® enhancement solution for 5 min on a shaker. Between each step the 210 

plates were washed three times with a solution containing 5 mM Tris-HCl, 0.15 M NaCl, 0.005% 211 

Tween 20, and 0.01% NaN3, at pH 7.75, except for the final step where plates were washed six 212 

times. Signal was measured in a Wallac 1420 VICTOR2 microplate reader (PerkinElmer, 213 

Waltham, MA, USA) by time-resolved fluorometry. 214 

 215 

MUC5AC and MUC2 enzyme-linked immunosorbent assay (ELISA) 216 
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Mucin fractions were diluted in 0.5 M GuHCl and coated overnight at 4°C onto 96-well plates 217 

(Nunc®, Thermo Scientific). For MUC2 detection, samples were reduced with 80 µl of 2 mM 218 

DTT diluted in buffer (6 M GuHCl, 5 mM EDTA, 0.1 M Tris-HCl, pH 8.0), at 37°C for 1 h. On 219 

top of the previous solution 20 µl of 5 mM IAA was added and incubated for 1 h in the dark. 220 

Plates were washed three times with PBS containing 0.05% Tween-20 (PBS-T) and blocked with 221 

1% blocking reagent for ELISA (Roche Diagnostics, Basel, Switzerland) containing 0.05% 222 

Tween 20 for 1 h, followed by incubation with the primary antibody anti-MUC5CR and anti-223 

MUC2C3 (both kindly provided by G. Hansson, University of Gothenburg, Sweden) diluted 224 

1/1000. Three more washes with PBS-T were performed before and after wells were incubated 225 

with a horse radish peroxidase (HRP) conjugated donkey anti-rabbit IgG (Jackson 226 

ImmunoResearch, West Grove, PA, USA) diluted 1/10000 for 1 h. Subsequently, 100 µl of 227 

tetramethylbenzidine substrate (Sigma-Aldrich, St. Louis, MO, USA) was added per well, and 228 

the reaction was stopped with an equivalent volume of 0.5 M H2SO4. Absorbance at 450 nm was 229 

measured in a Wallac 1420 VICTOR2 plate reader. The 45M1 antibody (Sigma-Aldrich, St. 230 

Louis, MO, USA) was used to confirm the specificity of the MUC5AC signal from the isolated 231 

mucins obtained with the anti-MUC5CR antibody, verifying the signal obtained with the soluble, 232 

but not the insoluble mucins. As a result we performed a range of control analyses with and 233 

without reduction and alkylation of the mucin samples, concluding that the absence of MUC5AC 234 

signal in the insoluble mucins using the 45M1 antibody was due to the destruction of the epitope 235 

recognized by this antibody after reduction and alkylation. Thus, we are convinced the MUC5AC 236 

signal is specific, although the antibodies were designed to detect human mucins. 237 

 238 

Bacterial strain and culture conditions 239 
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B. hyodysenteriae strain 8dII was cultured on tryptone soy agar (TSA, Thermo Fischer Scientific, 240 

Waltham, MA, USA) plates supplemented with 5% sheep blood (Thermo Fischer Scientific, 241 

Waltham, MA, USA), 0.1% yeast extract (Merck, Darmstadt, Germany), 400 µg/ml 242 

spectinomycin, 25 µg/ml colistin and 25 µg/ml vancomycin (AppliChem, Darmstadt, Germany), 243 

at 40°C under anaerobic conditions. 244 

 245 

Mucin sample preparation and concentration estimation 246 

Gradient fractions containing mucins were pooled together to obtain one sample for each 247 

gradient (i.e. two from each pig, insoluble and soluble). Mucin concentrations in pooled samples 248 

were determined by serial dilutions as well as a standard curve of a fusion protein of the mucin 249 

MUC1, 16TR and IgG2a Fc (25), starting at a concentration of 20 mg/ml and using seven 1/2 250 

serial dilutions in a carbohydrate detection assay described above. The mucin concentrations 251 

were calculated from the standard curve. Setting the concentration based on the glycan content 252 

appears most appropriate as bacterial-mucin interactions largely occur via the mucin glycans 253 

(14). Although this is not an absolute measure of concentration it can be used to ensure that the 254 

mucins are at the same concentration for comparative assays. Mucin concentration can also be 255 

determined by freeze drying, however all mucins do not come into solution after freeze drying, 256 

therefore this method of concentration determination can contain large errors as well as remove 257 

mucin species selectively.  258 

 259 

Binding of B. hyodysenteriae to pig mucins 260 

White 96-well plates (Corning Life Sciences, NY, USA) were coated overnight at 4°C with 6 261 

µg/ml mucins in 0.5 M GuHCl. Wells were washed three times with PBS-T and blocked with 262 

200 µl of 5% fetal bovine serum (FBS) for 1 h. Bacteria were harvested from TSA plates 263 
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(above), washed in PBS, centrifuged at 2500 × g for 5 min, and re-suspended in PBS with 5% 264 

FBS. One hundred microliters of a bacterial suspension diluted to108 bacterial cells/ml were 265 

added per well and the plates were shaken during incubation for 2 h at 40°C in an anaerobic 266 

environment. Plates were washed three times with PBS-T and once with PBS. Subsequently, 100 267 

μl of PBS was added to each well, followed by the addition of an equal volume of BacTiter-268 

Glo™ reagent (Promega, Madison, WI, USA). Incubation proceeded for 5 min at room 269 

temperature. Relative luminescence (RLU) was measured in an Infinite® M200 microplate 270 

reader (Tecan, Männedorf, Switzerland) with an integration time of 1000 ms per well. Controls 271 

included wells without the bacteria (PBS only) in mucin coated wells, and non-mucin coated 272 

wells incubated with the bacterial suspension followed by addition of PBS and reagent. In order 273 

to confirm that differences in B. hyodysenteriae binding to pig mucins were not due to variations 274 

of the mucin glycan content between samples, a glycan detection assay described above was 275 

simultaneously coated and performed with the binding experiments. Only samples with a glycan 276 

value of 17000-24000 Eu-counts were included to ensure that the analysis occurred within the 277 

linear range of the assay, and the B. hyodysenteriae binding signal was normalized against the 278 

glycan value for that particular coating and mucin. Results were obtained from three independent 279 

experiments with five technical replicates for each mucin, and were plotted as relative 280 

luminescence per glycan unit. 281 

 282 

Statistical analysis 283 

Statistical analysis was performed using GraphPad Prism version 6 software (La Jolla, CA, 284 

USA). Results are expressed as the mean ± SEM for normally distributed data, and median with 285 

interquartile range (IQR) for data that did not follow a normal distribution (determined using the 286 

D’Agostino-Pearson omnibus test). Data were analyzed using the Mann-Whitney, Kruskall-287 
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Wallis or One-way ANOVA tests wherever applicable, and p values ≤ 0.05 were considered as 288 

statistically significant. 289 

 290 

Results 291 

Clinical signs, bacterial shedding and histology after experimental inoculation 292 

Five inoculated pigs excreted B. hyodysenteriae in their feces and developed clinical signs of SD, 293 

including mucoid or hemorrhagic diarrhea. A milder case of diarrhea was observed in one of the 294 

five pigs with clinical signs of SD. The majority of the pigs had acute dysentery at the time of 295 

sacrifice (Table 1). Pig 4 had a longer duration of dysentery, however the clinical signs did not 296 

change during the 25 day period, and the macroscopic lesions corresponded with those of acute 297 

dysentery. Pig 3 had recovered from clinical signs before the day it was euthanized. Fecal 298 

shedding of B. hyodysenteriae by the inoculated pigs that developed SD started simultaneously 299 

with the onset of clinical signs and continued until the time of sacrifice. The control pigs did not 300 

excrete B. hyodysenteriae in their feces and did not present any clinical signs of SD at any time 301 

point during the experiment. In line with previous reports (20, 26), severe lesions were observed 302 

in the colon of pigs with acute dysentery, including necrotic colitis, hyperemic mucosa and fluid 303 

content with large amounts of mucus. Microscopically, the mucosa of pigs with SD had a 304 

thickened mucus layer (Figure 1), the epithelium contained abundant goblet cells, and the colonic 305 

crypts were elongated, dilated and filled with mucus and cell debris. Inflammatory cells were 306 

observed in the lamina propria, consisting of lymphocytes, plasma cells, and transmigrating 307 

neutrophils. The control group, as well as the inoculated pigs that did not develop SD, had no 308 

significant histopathological lesions. 309 

 310 

 311 
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Colonic mucus disorganization during swine dysentery is accompanied by de novo expression 312 

of MUC5AC and increased expression of MUC2 313 

Fluorescence microscopy of the pig colon tissue revealed that the mucus layer in the healthy pig 314 

colon, including the inoculated pigs that did not develop SD, was organized in striations parallel 315 

to the mucosa, and consisted of mainly the MUC2 mucin (Figure 1, A-C), similar to the mucus 316 

structure reported for the mouse colon (2, 27). In contrast, during infection with B. 317 

hyodysenteriae, a massive increase in MUC2 and also de novo production of MUC5AC was 318 

observed in the four inoculated pigs with severe clinical signs of dysentery (Figure 1, D-F). 319 

MUC5AC expression was not observed by immunofluorescence in the inoculated pig with 320 

milder clinical signs of dysentery. Both MUC2 and MUC5AC mucins were produced by goblet 321 

cells, and when MUC5AC was present in a goblet cell, it was usually present in a cell that also 322 

produced MUC2 (Figure 1, D and E). In addition to the massive increase in mucus layer 323 

thickness that occurred in dysenteric pigs, the mucus organization was vastly changed by 324 

infection as the striated organization was lost and instead the mucus appeared to flow in “rivers” 325 

with eukaryotic cells in between, often at a 45° angle from the mucosa. 326 

 327 

The antibodies used have previously been shown to detect their specific targets in humans and 328 

mice (27, 28), but no MUC2 or MUC5AC antibodies have been verified for use in pigs. To be 329 

certain the stain represents MUC5AC and MUC2, we confirmed that the antibodies we used for 330 

the immunofluorescence indeed bound to the isolated mucins in a specific manner that differed 331 

between the antibodies (Figure 2, A and B). The specificity of the MUC5AC antibody was 332 

further supported by the use of a second antibody, both MUC5AC antibodies followed a tissue 333 

distribution in the porcine stomach analogous to the distribution observed in the human and 334 

murine stomach. In addition, we designed qPCR primers specific for swine MUC2 and 335 
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MUC5AC, and indeed, the mRNA levels of MUC2 and MUC5AC increased four-fold and more 336 

than 15-fold, respectively, in the colon tissue of pigs with clinical signs of SD compared to the 337 

control pigs (Figure 3). The expression of MUC5AC was not upregulated in the colon tissue of 338 

the inoculated pig with milder clinical signs of dysentery. The mRNA levels of MUC1, a mucin 339 

induced during some bacterial infections in the mouse (3, 11) did not increase in the pigs with 340 

SD compared to the controls (Figure 3). 341 

 342 

Swine dysentery is associated with a five-fold mucin increase 343 

Mucins from B. hyodysenteriae inoculated and control pigs were isolated from the colonic mucus 344 

and analyzed in order to determine changes in their composition during infection. Mucins were 345 

extracted as previously described (23) and GuHCl soluble and insoluble mucins were obtained. 346 

Although insoluble mucins were ultimately solubilized by reduction in DTT they will be referred 347 

to from here on as “insoluble”. During isopychnic density gradient centrifugation, molecules 348 

concentrate as bands where the molecule density matches the density of the surrounding solution. 349 

As mucins are highly glycosylated, and sugars have a high density, density gradient 350 

centrifugation separates mucins from the less glycosylated non-mucin molecules. The initial 351 

CsCl/4M GuHCl isopycnic density gradient procedure rendered the isolated mucins free of non-352 

mucin proteins however they were contaminated with DNA (Figure 4A). Therefore a second 353 

CsCl/0.5 M GuHCl gradient was performed in all the samples ensuring removal of DNA 354 

contamination (Figure 4B). The median mucin density of the inoculated pigs was 1.527 g/ml 355 

(IQR = 0.015). No differences in mucin density were noted between inoculated and control pigs 356 

(p > 0.05, Figure 4D). Quantification of mucins based on their carbohydrate content revealed that 357 

the pig colon mucins of both B. hyodysenteriae inoculated and control pigs were mainly 358 

insoluble, with less than 20% of the mucins being soluble in GuHCl (Figure 4C). Pigs with 359 
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clinical signs of SD had a five-fold higher mucin content (p < 0.05) compared to the controls 360 

(Figure 4C). The amount of mucins isolated from control pigs was similar to the mucin content 361 

of the inoculated pigs that did not develop SD (p > 0.9, Figure 4C). 362 

 363 

In most density gradient samples, MUC5AC and MUC2 antibody reactivity coincided with the 364 

glycan peak (Figure 2A), although in one sample there were differences in the MUC2 and 365 

MUC5AC curves, demonstrating that the antibodies indeed recognized different mucins (Figure 366 

2B). MUC5AC was present in the GuHCl soluble and insoluble material in similar proportions 367 

(45% and 55%, respectively, Figure 2C). Mucins from the pigs with SD contained more 368 

MUC5AC compared to the controls and to the inoculated pigs that did not develop SD (p < 0.05, 369 

Figure 2C). In line with the immunofluorescence and qPCR results, the pig with mild clinical 370 

signs of SD had the lowest level of MUC5AC antibody reactivity. Both GuHCl soluble and 371 

insoluble mucins contained MUC2, with the majority (80-90%) of MUC2 present as insoluble 372 

mucin. In line with the immunofluorescence and qPCR results, the MUC2 protein level was also 373 

increased in pigs with SD compared to the controls, as well as to the inoculated pigs that did not 374 

develop SD (p < 0.05, Figure 2D). 375 

 376 

Increased binding ability of B. hyodysenteriae to colonic mucins from pigs with clinical signs 377 

of swine dysentery 378 

B. hyodysenteriae bound to colonic mucins isolated from both control and inoculated pigs. The 379 

B. hyodysenteriae binding pattern to mucins differed between individual pigs (insoluble mucins, 380 

overall p < 0.0001; soluble mucins, overall p < 0.0001; Figure 5A). This suggests that B. 381 

hyodysenteriae has an adhesin that recognizes specific glycan structure(s), as bacterial adhesins 382 

usually recognize these, and the mucin glycans differ between individuals (24). B. 383 
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hyodysenteriae binding per mucin glycan unit was higher to soluble mucins from pigs with 384 

clinical signs of SD compared to controls (p < 0.0001), and a similar trend was observed for the 385 

insoluble mucins (p = 0.0595, Figure 5B).  Although B. hyodysenteriae bound more to the 386 

soluble mucins isolated from pig 3 compared to the other pigs with clinical signs of SD (Figure 387 

5A), the overall binding difference between control and inoculated pig mucins remained 388 

statistically significant (p = 0.0002) even after excluding pig 3 data. When taking into account 389 

the higher total mucin content isolated from pigs with clinical signs of SD than healthy pigs, the 390 

total binding ability of B. hyodysenteriae to mucins from pigs with clinical signs of SD increased 391 

seven-fold (p < 0.005, Figure 5C). 392 

 393 

Discussion 394 

The present study provides new insights into the composition of pig colonic mucins during 395 

health and disease as well as mucin interactions with B. hyodysenteriae. This was accomplished 396 

through validation, optimization and generation of methods and tools that now can be 397 

specifically applied to the swine host. We demonstrated changes in the mucus environment of the 398 

swine colon during infection with B. hyodysenteriae, evidenced by disorganized mucus, a much 399 

thicker mucus layer as well as five-fold higher mucin content, accompanied by de novo 400 

MUC5AC synthesis. We identified that B. hyodysenteriae bound to swine colonic mucins in a 401 

manner that differed between individuals and mucin populations, and increased with infection. 402 

As a result of these changes, the altered mucin environment provided more bacterial binding 403 

sites, increasing the overall binding ability of B. hyodysenteriae to colonic mucus seven-fold.  404 

 405 

Successful isolation of mucins involves the removal of low density non-mucin proteins as well as 406 

DNA contaminants. Pure colonic mucins, soluble and insoluble in GuHCl, were obtained by two 407 
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isopycnic density gradient centrifugation steps in CsCl with different GuHCl molarities, as 408 

previously described (29). As in human colonic mucus (30), we reported in the pig a higher 409 

content of insoluble mucins compared to mucins soluble in guanidinium. Mucins are large 410 

molecules that form complex networks by connecting the mucin subunits via disulphide bonds. It 411 

has been suggested that the higher content of insoluble mucins in the colon denotes the presence 412 

of more covalent bonds, needing to be further solubilized by reduction (30). The density we 413 

observed for pig colonic mucins was higher than the density (1.38 g/ml) previously reported for 414 

human colonic mucins (30). Since human and pig MUC2 are highly homologous and the 415 

glycosylation has a similar monosaccharide composition, differences in density are likely to 416 

mainly reflect differences in the extent of glycosylation. Thus, pig colonic mucins appeared to be 417 

more heavily glycosylated than the human counterparts. The main carbohydrates that compose 418 

glycoproteins both in human and pigs are glucosamine, galactosamine, galactose, fucose and 419 

sialic acid (30-32). 420 

 421 

Besides lubricating the intestinal surface for the transit of the fecal bolus, goblet-cell secreted 422 

mucus protects the surface epithelium from bacterial invasion. The mucus layer of healthy pigs 423 

was constituted mainly of MUC2 mucin, organized in a striated fashion perpendicular to the 424 

mucosal surface, similar to the mucus composition of the mouse colon (6). During B. 425 

hyodysenteriae infection, we found a loss of the striated organization, and a substantial increase 426 

in MUC2 and de novo secretion of MUC5AC mucins. We recently reported dynamic changes in 427 

the mucus barrier during Citrobacter rodentium infection in mice, with structural loss and 428 

decrease of the inner mucus layer at the onset and mid time points of infection (27). However, 429 

during the clearance phase, the mucus layer thickness increased, but had a similar organization as 430 

in uninfected mice, and no Muc5ac was detected (27). The changes observed in B. 431 
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hyodysenteriae infected pigs are thus completely different to any of the mucus changes identified 432 

during C. rodentium infection and clearance. 433 

 434 

MUC2 and MUC5AC are both gel-forming mucins secreted by goblet cells. The MUC2 mucin is 435 

predominantly secreted in the intestine. There is evidence from Muc2 knock out mice that the 436 

lack of Muc2 increases the susceptibility to Salmonella and C. rodentium infections (33, 34). 437 

Unlike MUC2, MUC5AC does not form part of the normal mucin repertoire in the colon. 438 

Instead, it is commonly found in the normal gastric mucosa (5), airway epithelium (35) and 439 

conjunctiva (36). MUC2 and MUC5AC mRNA levels were increased in the colon tissue of pigs 440 

with clinical signs of swine dysentery, compared to the control pigs, demonstrating that the 441 

mucus change is regulated at the transcriptional level, in contrast to increases in mucus thickness 442 

seen in C. rodentium infection without changes in mRNA levels (27). Additionally, the fact that 443 

MUC1 expression was not increased in the inoculated pigs compared to the controls further 444 

supports the conclusion that B. hyodysenteriae infection has a different effect on mucin 445 

regulation compared to the C. rodentium model where Muc1 is increased (27). Similar to our 446 

results, expression of MUC5AC and MUC2 has been described in rabbit ileal loops inoculated 447 

with Shigella flexneri and Shigella dysenteriae (37). In addition, Muc5ac expression is increased 448 

in mice infected with the intestinal nematode Trichuris muris (38). In pigs, 449 

immunohistochemical staining with an antibody against human MUC5AC has indicated that this 450 

mucin is increased during infection with Salmonella Typhimurium (39), while during infection 451 

with Trichuris suis MUC5AC mRNA levels were elevated (40). During nematode infection, 452 

Muc5ac induction has a protective role in mice, decreasing nematode burden and viability (41). 453 

Moreover, Muc5ac deficiency hampers the clearance of the parasite, increasing the susceptibility 454 

to chronic infection (41). An altered mucin expression in the colon of pigs with SD was first 455 
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reported by Wilberts et al., after immunohistochemical staining with an antibody against human 456 

MUC5AC indicated its presence in pigs with acute dysentery following inoculation with B. 457 

hyodysenteriae or “B. hampsonii” (20), suggesting a common mucin response in the colon during 458 

infection with these pathogens. Our results suggest that during infection, de novo secretion of 459 

MUC5AC in the colon could depend on the stage of the disease, as it was not detected in the pig 460 

sacrificed one day after the onset of clinical signs, presenting only mild diarrhea. Furthermore, 461 

the similar mucin profile between the inoculated pigs that did not develop SD and the control 462 

pigs suggests that de novo secretion of MUC5AC in the colon depends on the ability of the 463 

bacterium to colonize the host. Further experiments are required to determine whether the de 464 

novo MUC5AC secretion plays a protective role during B. hyodysenteriae infection in the pig. 465 

 466 

Successful colonization of the host by enteric pathogens involves penetration of the mucus layer 467 

overlying the epithelium. Genomic evidence shows that B. hyodysenteriae carries genes 468 

associated with potential virulence factors involved in motility, chemotaxis, and tissue injury by 469 

proteases and hemolysins, that if expressed could facilitate colonization of the colon (42). Thus 470 

far, the importance of motility and chemotaxis in B. hyodysenteriae colonization has not been 471 

thoroughly demonstrated. A strong chemotactic response to pig mucins and components like 472 

fucose and serine has been described (43, 44), although a decreased attraction to mucins at 473 

concentrations greater than 6 % has also been reported (45). Colonization of the gastrointestinal 474 

tract can also be mediated by bacterial adhesion to carbohydrate structures such as blood group 475 

antigens that act as receptors. For example, H. pylori strains that express the BabA adhesin bind 476 

to the Lewis b blood group antigen expressed in the human gastric mucosa, resulting in a blood 477 

group and strain dependent binding (46), and the FedF adhesin expressed in F18 fimbriated E. 478 

coli binds to glycosphingolipids isolated from intestinal epithelium of blood group A and O pigs 479 
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(47). In the pig intestine AO blood group antigens are expressed, with a predominance of blood 480 

group A (48), and thus individual pigs carry different glycan structures in their intestines. Here 481 

we showed that B. hyodysenteriae bound to mucins from all pigs in the study, but that the level 482 

of binding per mucin glycan unit differed between the mucin populations and with disease status. 483 

In light of that other infections have previously shown to induce changes in mucin glycosylation 484 

(49), it is likely that the differences in B. hyodysenteriae binding reflect differences in the 485 

pig/mucin glycan repertoire rather than differences in the mucin density or extent of 486 

glycosylation. 487 

 488 

Mucins from pigs with clinical signs of SD bound more B. hyodysenteriae compared to mucins 489 

from the control pigs. Potentially, during infection the mucin secretion provides distinct 490 

carbohydrate structures for B. hyodysenteriae binding. The mucous niche is very unstable, and 491 

pathogen binding to mucins may prevent the more intimate adherence that can occur between the 492 

pathogen and, for example, glycolipids of the cell membrane. Indeed, mucin binding to the 493 

human gastric pathogen H. pylori acts as a decoy and prevents prolonged adherence (13). 494 

Furthermore, in the rhesus monkey model of H. pylori infection, animals with mucins that bind 495 

H. pylori more effectively have a lower H. pylori density in their stomachs, indicating that mucin 496 

binding to H. pylori aids in removing the bacteria from the gastric niche (50). However, it is not 497 

certain if these principles apply to B. hyodysenteriae; the massively thick disorganized mucus 498 

layer may not be as unstable as a normal mucus layer, and there is a possibility that the protective 499 

function of the mucus changes under these conditions. B. hyodysenteriae may indeed induce 500 

these mucus changes to create a more favorable niche instead.  501 

 502 
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In conclusion, B. hyodysenteriae bound to mucins from all pigs, in a manner that differed 503 

between the mucin populations and increased with SD. Together with the massive mucus 504 

induction and disorganization that occurred during infection, this demonstrates major changes in 505 

the colon mucus niche during B. hyodysenteriae infection.  506 

 507 
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Table 1. Experimental design and data of B. hyodysenteriae inoculated and control pigs 687 

Pig ID 
(Exp. N°)# 

Treatment 
group 

Samples 
analyzed† 

Start of 
clinical signs 

(dpi) 

Days from 
start of 

clinical signs 
until necropsy 

Clinical signs at 
day of necropsy 

Bh in feces 
the day of 
necropsy 

Macroscopic 
signs of SD 
at necropsy 

Histological 
signs of SD 
at necropsy 

1 (2) 

Inoculated 
with 
Bh 

Yes 

39 1 Yes 

 
Yes 

 
Yes Yes 

2 (2) 29 11 Yes 
3 (1) 12 28 No* 
4 (1) 15 25 Yes 
5 (2) 29 11 Yes 
6 (1) 

No SD 
 

N/A No No No No 

7 (1) 
8 (1) 
9 (1) 

10-14 (1-2) No 
A-F (1-2) 

Controls 
Yes 

N/A 
G-N (1-2) No 

# Exp. N° states whether the pigs belonged to the 1st or 2nd infection trial; Bh = Brachyspira hyodysenteriae; dpi = days post 688 

inoculation; SD = swine dysentery, N/A = not applicable; † Inoculated pigs without clinical signs of SD and control pigs were 689 

randomly selected to match the number of pigs with clinical signs of SD; * Pig 3 presented clinical signs of mucoid hemorrhagic 690 

diarrhea before sacrifice, and severe necrotic lesions in the colon at necropsy.  691 



31 
 

Table 2. List of primers used in qPCR 692 

Target Direction Sequence (5’- 3’) Reference 
MUC1 Forward TCCGACCCGGGATGCCTACCA This study 
 Reverse GGCTGCCCCCACCGTTGCCT This study 
MUC2 Forward CCTTGCTCTCGTGTGGAACA This study 
 Reverse ACTTCTCCTCGGGCTTGTTG This study 
MUC5AC Forward TGCGCCGTGCCACGCGGAGAT This study 
 Reverse GCGGGGCAGGGGAAGGGGCA This study 
ACTB Forward CACGCCATCCTGCGTCTGGA (22) 
 Reverse AGCACCGTGTTGGCGTAGAG (22) 
RPL4 Forward CAAGAGTAACTACAACCTTC (22) 
 Reverse GAACTCTACGATGAATCTTC (22) 
 693 

 694 

Figure 1. Colon tissue sections from control and B. hyodysenteriae inoculated pigs stained 695 

for MUC2 and MUC5AC. Immunofluorescence of MUC2 (green) and MUC5AC (red) in colon 696 

tissue counterstained with DAPI (blue). Panels A-C show the striated organization of the mucus 697 

in the colon of control pigs along with expression of MUC2. In contrast, panels D-F show a 698 
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disorganized mucus barrier with de novo expression of MUC5AC and increased expression of 699 

MUC2 in the colon of pigs with clinical signs of SD. 700 

 701 

 702 

Figure 2. MUC5AC and MUC2 content in the colon of B. hyodysenteriae inoculated pigs. 703 

(A) The peak of antibody reactivity against MUC5AC and MUC2 coincided with the glycan 704 

detection peak in GuHCl soluble mucin fractions isolated from a B. hyodysenteriae inoculated 705 

pig with clinical signs of SD. (B) The mucin population of one pig was more heterogeneous with 706 

distinctly different mucin peaks, demonstrating that the antibodies against MUC2 and MUC5AC 707 

recognize different mucins. (C) MUC5AC and (D) MUC2 antibody reactivity against GuHCl 708 

soluble and insoluble mucins isolated from B. hyodysenteriae inoculated pigs that developed SD 709 

( pig 1,  pig 2,  pig 3,  pig 4, and  pig 5), inoculated pigs that did not develop SD, and 710 

control pigs. Results are expressed as the median with interquartile range. Kruskall-Wallis test 711 

with Dunn’s correction for multiple comparisons, * p < 0.05. 712 
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 713 

 714 

Figure 3. MUC5AC, MUC2 and MUC1 mRNA expression of B. hyodysenteriae inoculated 715 

and control pigs. Normalized fold expression of MUC5AC, MUC2, and MUC1 mRNA levels in 716 

the colon tissue of B. hyodysenteriae inoculated pigs with clinical signs of SD and controls by 717 

qPCR analysis. Expression data were normalized against ACTB and RPL4 reference genes. Fold 718 

changes were calculated using ΔΔCT. Results are expressed as the median with interquartile 719 

range. Mann-Whitney test, * p < 0.05 and ** p < 0.005. 720 

 721 



34 
 

 722 

Figure 4. Isolation, density and glycan content of colonic mucins from B. hyodysenteriae 723 

inoculated and control pigs. (A) Mucin fractions were recovered from the density gradients and 724 

analyzed for their glycan content. Here, a representative sample of soluble mucins isolated from 725 

a B. hyodysenteriae inoculated pig with clinical signs of SD after the first gradient in CsCl/4 M 726 

GuHCl (starting density of 1.39 g/ml), shows that low density non-mucin proteins (A280 nm) are 727 

excluded from the pooled mucin fractions. Bar: pooled mucin fractions 2-7. (B) Representative 728 

sample of soluble mucins isolated from a control pig, shows baseline separation between the 729 

glycan peak and DNA after a second gradient in CsCl/0.5 M GuHCl (starting density 1.5 g/ ml). 730 

Bar: pooled mucin fractions 1-2. (C) Glycan content of GuHCl soluble and insoluble mucins 731 

isolated from inoculated pigs with clinical signs of SD ( pig 1,  pig 2,  pig 3,  pig 4, and 732 

 pig 5), inoculated pigs that did not develop SD, and control pigs. The mucin content in the 733 

colon was five-fold higher in inoculated pigs with clinical signs of SD compared to the controls. 734 



35 
 

(D) Density (g/ml) of GuHCl soluble and insoluble mucins isolated from control and B. 735 

hyodysenteriae inoculated pigs (with and without clinical signs of SD) showing no differences 736 

between the groups. Results are expressed as the median with interquartile range. Kruskall-737 

Wallis test with Dunn’s correction for multiple comparisons, * p < 0.05. 738 

 739 

 740 

Figure 5. Binding of B. hyodysenteriae to colonic mucins. (A) Binding pattern of B. 741 

hyodysenteriae to soluble and insoluble mucins isolated from control (pigs A-F) and inoculated 742 

pigs with clinical signs of SD (1-5). Results are expressed as the mean ± SEM of technical 743 

replicates. One-way ANOVA, with Tukey’s correction for multiple comparisons, * p < 0.05 and 744 

**** p < 0.0001. (B) B. hyodysenteriae binding to soluble and insoluble mucins isolated from 745 

control and pigs with SD showing higher binding to the soluble mucins isolated from pigs with 746 

clinical signs of SD compared to the control group. Results are expressed as the median with 747 

interquartile range. Mann-Whitney test, **** p < 0.0001. (C) Binding ability of B. 748 

hyodysenteriae to the total mucin content observed in pigs with SD ( pig 1,  pig 2,  pig 3, 749 

 pig 4, and  pig 5) and control pigs (i.e binding to mucin at a set concentration × the total 750 

amount of mucin recovered from that sample). Results are expressed as the median with 751 

interquartile range. Mann-Whitney test, ** p < 0.005. Data shown are representative of three 752 

independent experiments. 753 


