529 research outputs found

    ISOTOPIC POWER SOURCES COUPLED WITH THERMOELECTRIC CONVERTERS

    Get PDF

    A parallel implementation of an off-lattice individual-based model of multicellular populations

    Get PDF
    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population

    Specialised information processing deficits and distinct metabolomics profiles following TM-domain disruption of Nrg1

    Get PDF
    While there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signalling in schizophrenia. The present study focused on specialised behavioural and characterisation of hitherto un-characterised information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across two different sites and protocols, Nrg1 mutants demonstrated deficits in pre-pulse inhibition, a measure of sensorimotor gating that is disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second-, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in the ‘what-where-when’ cognitive paradigm, Nrg1 mutants displayed sex-specific (males only) disruption of ‘what-when’ performance, indicative of impaired episodic memory. Differential metabolomic profiling revealed that these behavioural phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioural changes in adulthood

    Comment on the Generation Number in Orbifold Compactifications

    Full text link
    There has been some confusion concerning the number of (1,1)(1,1)-forms in orbifold compactifications of the heterotic string in numerous publications. In this note we point out the relevance of the underlying torus lattice on this number. We answer the question when different lattices mimic the same physics and when this is not the case. As a byproduct we classify all symmetric ZNZ_N-orbifolds with (2,2)(2,2) world sheet supersymmetry obtaining also some new ones.Comment: 28 pages, 9 figures not included, available in postscript at reques

    Moisture susceptibility of high and low compaction dry process crumb rubber modified asphalt mixtures

    Get PDF
    The field performance of dry process crumb rubber-modified (CRM) asphalt mixtures has been reported to be inconsistent with stripping and premature cracking on the surfacing. One of the concerns is that, because achieving field compaction of CRM material is difficult due to the inherent resilient nature of the rubber particle, nonuniform field compaction may lead to a deficient bond between rubber and bitumen. To assess the influence of compaction, a series of CRM and control mixtures was produced and compacted at two levels: 4% (low, optimum laboratory compaction) and 8% (high, field experience) air void content. The long-term durability, in regard to moisture susceptibility of the mixtures, was assessed by conducting repeated moisture conditioning cycles. Mechanical properties (stiffness, fatigue, and resistance to permanent deformation) were determined in the Nottingham Asphalt Tester. Results indicated that compared with conventional mixtures, the CRM mixtures, regardless of compaction effort, are more susceptible to moisture with the degree of susceptibility primarily depending on the amount of rubber in the mixture, rather than the difference in compaction. This behavior is different from that of conventional mixtures in which, as expected, poorly compacted mixtures were found to be more susceptible to moisture than were well-compacted mixtures

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Calibrating and adjusting expectations in life: A grounded theory on how elderly persons with somatic health problems maintain control and balance in life and optimize well-being

    Get PDF
    Aim: This study aims at exploring the main concern for elderly individuals with somatic health problems and what they do to manage this. Method: In total, 14 individuals (mean = 74.2 years; range = 68–86 years) of both gender including hospitalized and outpatient persons participated in the study. Open interviews were conducted and analyzed according to grounded theory, an inductive theory-generating method. Results: The main concern for the elderly individuals with somatic health problems was identified as their striving to maintain control and balance in life. The analysis ended up in a substantive theory explaining how elderly individuals with somatic disease were calibrating and adjusting their expectations in life in order to adapt to their reduced energy level, health problems, and aging. By adjusting the expectations to their actual abilities, the elderly can maintain a sense of that they still have the control over their lives and create stability. The ongoing adjustment process is facilitated by different strategies and result despite lower expectations in subjective well-being. The facilitating strategies are utilizing the network of important others, enjoying cultural heritage, being occupied with interests, having a mission to fulfill, improving the situation by limiting boundaries and, finally, creating meaning in everyday life. Conclusion: The main concern of the elderly with somatic health problems was to maintain control and balance in life. The emerging theory explains how elderly people with somatic health problems calibrate their expectations of life in order to adjust to reduced energy, health problems, and aging. This process is facilitated by different strategies and result despite lower expectation in subjective well-being
    • …
    corecore