160 research outputs found
A projection method for multiphase flows
An Eulerian projection approach for incompressible variable-density two-phase flows is presented. The Navier-Stokes equations governing these flows are reformulated to take the form of the corresponding equations for the lighter phase with a constant density, which can be efficiently solved using standard numerical methods. The effect of the additional mass in the heavier phase is accounted for by a forcing term, which is determined from the solution of an artificial velocity field. This artificial field is subjected solely to inertial and gravity forces as well as the force coupling the flow field and the artificial field. The phase interface in this purely Eulerian approach is described using the level-set method. Results for two-dimensional simulations of the Rayleigh-Taylor instability are presented to validate the new method
Electroencephalographic field influence on calcium momentum waves
Macroscopic EEG fields can be an explicit top-down neocortical mechanism that
directly drives bottom-up processes that describe memory, attention, and other
neuronal processes. The top-down mechanism considered are macrocolumnar EEG
firings in neocortex, as described by a statistical mechanics of neocortical
interactions (SMNI), developed as a magnetic vector potential . The
bottom-up process considered are waves prominent in synaptic
and extracellular processes that are considered to greatly influence neuronal
firings. Here, the complimentary effects are considered, i.e., the influence of
on momentum, . The canonical
momentum of a charged particle in an electromagnetic field, (SI units), is calculated, where the charge of
is , is the magnitude of the charge of an
electron. Calculations demonstrate that macroscopic EEG can be
quite influential on the momentum of ions, in
both classical and quantum mechanics. Molecular scales of
wave dynamics are coupled with fields developed at macroscopic
regional scales measured by coherent neuronal firing activity measured by scalp
EEG. The project has three main aspects: fitting models to EEG
data as reported here, building tripartite models to develop
models, and studying long coherence times of waves in the
presence of due to coherent neuronal firings measured by scalp
EEG. The SMNI model supports a mechanism wherein the interaction at tripartite synapses, via a dynamic centering
mechanism (DCM) to control background synaptic activity, acts to maintain
short-term memory (STM) during states of selective attention.Comment: Final draft. http://ingber.com/smni14_eeg_ca.pdf may be updated more
frequentl
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)
Contributions of the Pierre Auger Collaboration to the 34th International
Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July
- 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
Neoadjuvant Therapy in Early Breast Cancer:Treatment Considerations and Common Debates in Practice
Neoadjuvant treatment offers a number of benefits for patients with early breast cancer, and is an important option for consideration by multidisciplinary teams. Despite literature showing its efficacy, the use of neoadjuvant therapy varies widely. Here we discuss the clinical evidence supporting the use of neoadjuvant therapy in early stage breast cancer, including patient selection, monitoring response, surgery and radiotherapy considerations, with the aim of assisting multidisciplinary teams to determine patient suitability for neoadjuvant treatment
- âŠ