27 research outputs found

    Investigation of the synthesis, activation, and isosteric heats of CO₂ adsorption of the isostructural series of metal-organic frameworks M₃(BTC)₂ (M = Cr, Fe, Ni, Cu, Mo, Ru)

    Get PDF
    The synthesis, activation, and heats of CO₂ adsorption for the known members of the M₃(BTC)₂ (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO₂–metal interactions for CO₂ storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO₂ adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO₂ affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni₃(BTC)₂(Me₂NH)₂(H₂O) and the increased charge of the dimetal secondary building unit in [Ru₃(BTC)₂][BTC].Massachusetts Institute of Technology. Energy Initiative (Seed Fund

    Rewiring of gene networks underlying mite allergen-induced CD4+Th-cell responses during immunotherapy

    No full text
    Background Multiple regulatory mechanisms have been identified employing conventional hypothesis-driven approaches as contributing to allergen-specific immunotherapy outcomes, but understanding of how these integrate to maintain immunological homeostasis is incomplete.Objective To explore the potential for unbiased systems-level gene co-expression network analysis to advance understanding of immunotherapy mechanisms.Methods We profiled genome-wide allergen-induced Th-cell responses prospectively during 24 months subcutaneous immunotherapy (SCIT) in 25 rhinitis, documenting changes in immunoinflammatory pathways and associated co-expression networks and their relationships to symptom scores out to 36 months.Results Prior to immunotherapy, mite-induced Th-cell response networks involved multiple discrete co-expression modules including those related to Th2-, type1 IFN-, inflammation- and FOXP3/IL2-associated signalling. A signature comprising 109 genes correlated with symptom scores, and these mapped to cytokine signalling/T-cell activation-associated pathways, with upstream drivers including hallmark Th1/Th2- and inflammation-associated genes. Reanalysis after 3.5 months SCIT updosing detected minimal changes to pathway/upstream regulator profiles despite 32.5% symptom reduction; however, network analysis revealed underlying merging of FOXP3/IL2-with inflammation-and Th2-associated modules. By 12 months SCIT, symptoms had reduced by 41% without further significant changes to pathway/upstream regulator or network profiles. Continuing SCIT to 24 months stabilized symptoms at 47% of baseline, accompanied by upregulation of the type1 IFN-associated network module and its merging into the Th2/FOXP3/IL2/inflammation module.Conclusions Subcutaneous immunotherapy stimulates progressive integration of mite-induced Th cell-associated Th2-, FOXP3/IL2-, inflammation- and finally type1 IFN-signalling subnetworks, forming a single highly integrated co-expression network module, maximizing potential for stable homeostatic control of allergen-induced Th2 responses via cross-regulation. Th2-antagonistic type1 IFN signalling may play a key role in stabilizing clinical effects of SCIT
    corecore