9,145 research outputs found
Similarities and contrasts in tectonic and volcanic style and history along the Colorado plateaus-to-basin and range transition zone in Western Arizona: Geologic framework for tertiary extensional tectonics
The overall temporal and spatial relations between middle Tertiary volcanism and tectonism from the Basin and Range province onto the edge of the Colorado Plateaus province suggest that a single magnetic-tectonic episode affected the entire region more or less simultaneously during this period. The episode followed a post-Laramide (late Eocene through Oligocene) period of 25 million years of relative stability. Middle Tertiary volcanism did not migrate gradually eastward in a simple fashion onto the Colorado Plateau. In fact, late Oligocene volcanism appears to be more voluminous near the Aquarius Mountains than throughout the adjacent Basin and Range province westward to the Colorado River. Any model proposed to explain the cause of extension and detachment faulting in the eastern part of the Basin and Range province must consider that the onset of volcanism appears to have been approximately synchronous from the Colorado River region of the Basin and Range across the transition zone and onto the edge of the Colorado Plateaus
A critical dimension for the stability of perfect fluid spheres of radiation
An analysis of radiating perfect fluid models with asymptotically AdS
boundary conditions is presented. Such scenarios consist of a spherical gas of
radiation (a "star") localised near the centre of the spacetime due to the
confining nature of the AdS potential. We consider the variation of the total
mass of the star as a function of the central density, and observe that for
large enough dimensionality, the mass increases monotonically with the density.
However in the lower dimensional cases, oscillations appear, indicating that
the perfect fluid model of the star is becoming unrealistic. We find the
critical dimension separating these two regimes to be eleven.Comment: 18 pages, 5 figures; v2 reference and footnote added; v3 slight
reordering of content, new section added with further analysis; v4 Final
version - small changes, including a new title, accepted for publication in
CQ
The Anti-Coincidence Detector for the GLAST Large Area Telescope
This paper describes the design, fabrication and testing of the
Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope
(GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against
the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders
of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector,
requiring a total active area of ~8.3 square meters. The ACD detector utilizes
plastic scintillator tiles with wave-length shifting fiber readout. In order to
suppress self-veto by shower particles at high gamma-ray energies, the ACD is
segmented into 89 tiles of different sizes. The overall ACD efficiency for
detection of singly charged relativistic particles entering the tracking
detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg
An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation
Microscopic entropy of the charged BTZ black hole
The charged BTZ black hole is characterized by a power-law curvature
singularity generated by the electric charge of the hole. The curvature
singularity produces ln r terms in the asymptotic expansion of the
gravitational field and divergent contributions to the boundary terms. We show
that these boundary deformations can be generated by the action of the
conformal group in two dimensions and that an appropriate renormalization
procedure allows for the definition of finite boundary charges.
In the semiclassical regime the central charge of the dual CFT turns out to
be that calculated by Brown and Henneaux, whereas the charge associated with
time translation is given by the renormalized black hole mass. We then show
that the Cardy formula reproduces exactly the Bekenstein-Hawking entropy of the
charged BTZ black hole.Comment: 9 pages, no figure
On the existence of dyons and dyonic black holes in Einstein-Yang-Mills theory
We study dyonic soliton and black hole solutions of the
Einstein-Yang-Mills equations in asymptotically anti-de Sitter space. We prove
the existence of non-trivial dyonic soliton and black hole solutions in a
neighbourhood of the trivial solution. For these solutions the magnetic gauge
field function has no zeros and we conjecture that at least some of these
non-trivial solutions will be stable. The global existence proof uses local
existence results and a non-linear perturbation argument based on the (Banach
space) implicit function theorem.Comment: 23 pages, 2 figures. Minor revisions; references adde
Microquasar models for 3EG J1828+0142 and 3EG J1735-1500
Microquasars are promising candidates to emit high-energy gamma-rays.
Moreover, statistical studies show that variable EGRET sources at low galactic
latitudes could be associated with the inner spiral arms. The variable nature
and the location in the Galaxy of the high-mass microquasars, concentrated in
the galactic plane and within 55 degrees from the galactic center, give to
these objects the status of likely counterparts of the variable low-latitude
EGRET sources. We consider in this work the two most variable EGRET sources at
low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model
to explain the EGRET data in consistency with the observations at lower
energies (from radio frequencies to soft gamma-rays) within the EGRET error
box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de
Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas
(4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a
poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for
publication in the Chinese Journal of Astronomy & Astrophysic
Mammalian Cell Cytotoxicity Analysis of Soybean Rust Fungicides
The identification of soybean rust, caused by Phakopsora
pachyrhizi H. Sydow & Sydow, in the southern United
States in November 2004 (Schneider et al. 2005 ), in the
Midwest in 2006 (Hartman et al. 2007 ), and elsewhere has
increased the concerns of the impact of the pathogen on US
soybean production (Miles et al. 2007 ). The rapid spread of
P. pachyrhizi and its potential to cause severe yield losses
makes this among the most destructive foliar diseases of
soybean. Yield losses of 20%–60% were reported in Asia,
with losses of 80% reported from experimental plots in
Taiwan (Hartman et al. 1991 ). Soybean rust could have a
major impact on both total soybean production and production
costs in the US
- …