56 research outputs found

    Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors

    Get PDF
    Mammals express the sialic acids ​N-acetylneuraminic acid (​Neu5Ac) and ​N-glycolylneuraminic acid (​Neu5Gc) on cell surfaces, where they act as receptors for pathogens, including influenza A virus (IAV). ​Neu5Gc is synthesized from ​Neu5Ac by the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this enzyme is inactive and only ​Neu5Ac is produced. Ferrets are susceptible to human-adapted IAV strains and have been the dominant animal model for IAV studies. Here we show that ferrets, like humans, do not synthesize ​Neu5Gc. Genomic analysis reveals an ancient, nine-exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia members of the Carnivora. Interactions between two human strains of IAV with the sialyllactose receptor (sialic acid—α2,6Gal) confirm that the type of terminal sialic acid contributes significantly to IAV receptor specificity. Our results indicate that exclusive expression of ​Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains

    The pneumococcal alpha-glycerophosphate oxidase enhances nasopharyngeal colonization through binding to host glycoconjugates

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is a major human pathogen, causing a broad spectrum of diseases including otitis media, pneumonia, bacteraemia and meningitis. Here we examined the role of a potential pneumococcal meningitis vaccine antigen, alpha-glycerophosphate oxidase (SpGlpO), in nasopharyngeal colonization. We found that serotype 4 and serotype 6A strains deficient in SpGlpO have significantly reduced capacity to colonize the nasopharynx of mice, and were significantly defective in adherence to human nasopharyngeal carcinoma cells in vitro. We also demonstrate that intranasal immunization with recombinant SpGlpO significantly protects mice against subsequent nasal colonization by wild type serotype 4 and serotype 6A strains. Furthermore, we show that SpGlpO binds strongly to lacto/neolacto/ganglio host glycan structures containing the GlcNAcβ1-3Galβ disaccharide, suggesting that SpGlpO enhances colonization of the nasopharynx through its binding to host glycoconjugates. We propose that SpGlpO is a promising vaccine candidate against pneumococcal carriage, and warrants inclusion in a multi-component protein vaccine formulation that can provide robust, serotype-independent protection against all forms of pneumococcal disease

    Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling

    Get PDF
    Cyclic adenosine diphosphate (ADP)–ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2′cADPR) and v2-cADPR (3′cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2′cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3′cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3′cADPR in bacteria as an antiviral and plant immunity–suppressing signaling molecule

    Discovery of Cofactor Competitive Inhibitors against the Human Methyltransferase Fibrillarin

    No full text
    Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2′-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders

    F9 Fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galbeta1-3GlcNAc-containing glycans

    Get PDF
    Uropathogenic Escherichia coli (UPEC) is the leading causative agent of urinary tract infections (UTI) in the developed world. Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E. coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in comparison to the well-defined E. coli reference (ECOR) collection. In the prototypic UPEC strain CFT073, the global regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37°C through its ability to bind directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20°C, representing the first evidence of functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise and bind to terminal Galβ1-3GlcNAc structures

    Identification of NuoX and NuoY Ligand binding specificity in the Campylobacter Jejuni Complex I

    No full text
    The components of the proton pump NADH:ubiquinone (Complex I) of the respiration pathway have been identified in the C. jejuni genome. However, the paradigm genes nuoE and nuoF encoding subunits of the NADH dehydrogenase module of Complex I are absent. Instead the genes cj1575c and cj1574c encoding NuoX and NuoY are present in the loci corresponding to nuoE and nuoF, respectively. Bioinformatics analyses showed the presence of nuoX and nuoY homologues in all sequenced strains of C. jejuni and in other Campylobacter species, as well as the presence of orthologues in other ɛ-Proteobacteria. To understand the involvement of the NuoX and NuoY proteins in the respiration of C. jejuni and to characterize their ligand binding specificity and affinity, a tricarboxylic acid cycle array was developed as a tool to identify proteins that can bind to intermediates of this cycle as well as other metabolites. This array showed that NuoX bound FAD2+, and NuoY bound FAD2+ and the electron donors malate and lactate. Saturation Transfer Difference Nuclear Magnetic Resonance studies confirmed the NuoY binding ligands, and suggested that the flavin moiety of FAD2+ interacted more strongly with NuoY than the adenine moiety. Affinity data generated by Surface Plasmon Resonance indicated that NuoY bound to FAD2+ with a KD of 337 nM; NuoX and NuoY had an affinity for NADH of a KD of 403 nM and 478 nM, respectively, and a ten-fold lower affinity for both NAD+ and FAD2+. The data suggested that the flavin-adenine dinucletoide could be bound preferentially to the NAD in the Complex I of C. jejuni

    Carbohydrate binding and gene expression by in vitro and in vivo propagated Campylobacter jejuni after Immunomagnetic Separation

    No full text
    Campylobacter jejuni is an important human food-borne intestinal pathogen, however relatively little is known about its mechanisms of pathogenesis or pathogen-host interactions. To monitor changes in gene expression and glycan binding of C. jejuni within a common avian host, an immunomagnetic separation technique (IMS) was utilised to directly isolate infecting C. jejuni 81116 from a chicken host. An average of 105 cells/g was re-isolated from chicken caecal samples by IMS technique. The in vivo passaged strains were used successfully in evaluation of carbohydrate binding through the use of a glycan array and were further suitable for transcriptome analysis. The glycan microarray analysis demonstrated differences in binding to negatively charged glycans of laboratory grown strains of C. jejuni compared with strains isolated after in vivo passage. The in vivo passaged strains showed marked up-regulation of chemotaxis receptors and toxin genes. The optimised Campylobacter IMS technique described in this study allowed isolation directly from an animal host. Changes in gene expression and glycan binding at an in vivo level can also be identified by using this method. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Variation of chemosensory receptor content of <it>Campylobacter jejuni</it> strains and modulation of receptor gene expression under different <it>in vivo</it> and <it>in vitro</it> growth conditions

    No full text
    <p>Abstract</p> <p>Background</p> <p>Chemotaxis is crucial for the colonisation/infection of hosts with <it>Campylobacter jejuni.</it> Central to chemotaxis are the group A chemotaxis genes that are responsible for sensing the external environment. The distribution of group A chemoreceptor genes, as found in the <it>C. jejuni</it> sequenced strains, <it>tlp1-4, 7, 10</it> and <it>11</it> were determined in 33 clinical human and avian isolates.</p> <p>Results</p> <p>Group A <it>tlp</it> gene content varied among the strains with genes encoding <it>tlp1</it> (aspartate receptor, <it>ccaA</it>) and <it>tlp7</it> present in all strains tested, where as <it>tlp11</it> was present in only one of our international collection clinical isolates, <it>C. jejuni</it> 520, but was more prevalent (9/13) in the freshly isolated clinical stains from patients who required hospitalisation due to <it>C. jejuni</it> infection (GCH1-17). Relative expression levels of the group A <it>tlp</it> genes were also determined in <it>C. jejuni</it> reference strains NCTC 11168-GS, 11168-O and 81116 using cells grown <it>in vitro</it> at 37°C, 42°C and maintained at room temperature and with cells isolated directly from murine and avian hosts by immune magnetic separation without subsequent culture. Gene expression of <it>tlp</it> genes was varied based on strain, growth conditions and <it>in vivo</it> isolation source. <it>Tlp1,</it> although the most conserved, showed the lowest and most varied mRNA expression and protein production under laboratory conditions. <it>Tlp7</it> was highly expressed at most conditions tested, and gene expression was not influenced by the <it>tlp7</it> gene encoding a full length protein or one expressed as separate periplasmic and cytoplasmic domains.</p> <p>Conclusion</p> <p>We have shown that chemosensory receptor set variation exists among <it>C. jejuni</it> strains, but is not dependent on the isolation source.</p

    Lectin activity of the TcdA and TcdB toxins of Clostridium difficile

    No full text
    Clostridium difficile is a major cause of hospital-acquired antibioticassociated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both - and -linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal - and -linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.Full Tex
    corecore