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Abstract

Uropathogenic Escherichia coli (UPEC) is the leading causative agent of urinary tract infections (UTI) in the developed world.
Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC
strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best
characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm
formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type
clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E.
coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in
comparison to the well-defined E. coli reference (ECOR) collection. In the prototypic UPEC strain CFT073, the global
regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37uC through its ability to bind
directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20uC, representing the first evidence of
functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise
and bind to terminal Galb1-3GlcNAc structures.
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Introduction

Urinary tract infections (UTI) are among the most common

infectious diseases of humans and a major cause of morbidity. In

the USA, UTI account for approximately $1.6 billion in medical

expenditures each year [1]. It is estimated that 40–50% of adult

healthy women will experience at least one UTI episode in their

lifetime. The recurrence rate of UTI is high and often the

infections tend to become chronic with many subsequent episodes.

UTIs usually start as cystitis but often evolve to encompass the

kidneys and can ultimately result in dissemination into the

bloodstream and/or renal failure. Catheter-associated UTIs are

also very common and account for 40% of all nosocomial

infections. Most patients with an indwelling urinary catheter for

thirty days or more develop bacteriuria [2].

Uropathogenic Escherichia coli (UPEC) is the cause of the

majority (.80%) of UTIs in humans. UPEC isolates contain

numerous virulence factors, which allow for the successful

colonisation of the urinary tract. Although no single virulence

factor is uniquely definitive of UPEC, the ability to cause

symptomatic UTI is enhanced by adhesins (e.g. type 1 and P

fimbriae) and toxins (e.g. hemolysin) [3,4]. Adherence to the

urinary tract epithelium is the first stage of UTI as it enables

bacteria to resist the hydrodynamic forces of urine flow and

establish infection. Among the best-described adhesins produced

by UPEC are type 1, P, and F1C/S fimbriae of the chaperone-

usher (CU) pathway [4].

The CU pathway is a highly conserved secretion system in

Gram-negative bacteria that mediates the assembly of hair-like

fimbrial polymers on the bacterial cell surface. CU fimbrial

biogenesis requires a dedicated periplasmic chaperone and an

outer membrane usher protein that functions as an assembly

platform of the fimbrial organelle which is primarily composed of

a helical array of 500 to 3,000 copies of major subunit protein

[5,6]. The receptor-binding adhesin resides at the distal end of the

fimbrial organelle and contains a C-terminal domain which

connects the adhesin to the terminal major subunit protein

sometimes aided by one or more minor subunits, and an N-

terminal lectin domain which mediates binding to specific ligands

[3]. The genes encoding the various components of CU fimbriae
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are typically organised in an operon and transcribed as a single

polycistronic mRNA molecule [7].

Genomic analysis of the E. coli pan genome has revealed 38

distinct chaperone-usher fimbrial types based on genomic locus

position and usher phylogeny [8]. Type 1 and P fimbriae are

primary contributors to the colonisation of the urinary tract by

UPEC and have been the focus of extensive study (for a review,

refer to [9]). Type 1 fimbriae confer binding to a-D-mannosylated

proteins such as uroplakins, which are abundant in the uroep-

ithelial lining of the bladder [10]. P fimbriae contribute to UTI by

binding to the a-Gal(1–4)b-Gal receptor epitope in the globoseries

of glycolipids found in the kidney [11,12]. F1C/S fimbriae also

contribute to UTI through their ability to bind to GalNAcb1-

4Galb glycolipids and sialyl galactoside glycoproteins present on

epithelial cells in the bladder and kidneys [13–15].

We previously characterised F9 fimbriae as a new CU fimbriae

type in UPEC [16]. F9 fimbriae are part of the c1 fimbrial

subclade and are closely related to type 1 and F1C/S fimbriae in

genetic organization and structural composition [8,17]. Low levels

of expression of the F9 major subunit have been detected in

enterohemorrhagic E. coli (EHEC) strain O157:H7 EDL933 and

in a UPEC CFT073fim foc null-mutant, however, to date there is

no evidence of functional F9 fimbriae expression in any wild-type

E. coli strain [16,18]. Cloning and expression of the f9 genes in a

recombinant E. coli strain revealed F9 fimbriae mediate strong

biofilm formation, however F9 expression did not confer

hemagglutination or cellular adherence properties. In this study,

we have examined the distribution and conservation of the f9

operon in E. coli, demonstrated the high frequency of f9 genes in

extant E. coli strains, and evaluated the conservation of the F9

adhesin lectin domain. Additionally, we have demonstrated that

the f9 fimbrial gene cluster is subjected to temperature-dependent

repression by the global regulator H-NS. Repression was alleviated

at lower temperatures, at which F9 fimbriae mediated significant

biofilm formation on abiotic surfaces by wild-type E. coli. In order

to study the ligand recognition properties of F9 fimbriae, we

utilized a glycan array and identified Galb1-3GlcNAc and lacto-N-

tetraose glycans as novel receptor targets for these fimbriae.

Materials and Methods

Phylogenetic inference, sequence alignment and
diversity estimations

The complete genomes of 42 E. coli strains representing the

diversity of the species were investigated for presence of the f9

operon using the NCBI BLAST2.2.25+ program [19]. The f9

operon and its genomic context were aligned and visualised using

Easyfig [20]. The evolutionary relationship of the 42 E. coli strains

was predicted by Multi-Locus Sequence Typing (MLST) of the

,9 kb concatenated nucleotide sequences of 7 housekeeping genes

(adk, fumC, gyrB, icd, mdh, purA, recA) as previously described [21].

Sequences were aligned in MEGA5 using the ClustalW DNA

weight matrix under default settings. The Neighbour-Joining

method of MEGA5 was used to infer the evolutionary history, with

distances computed by the Jukes-Cantor method. The resulting

phylogenetic tree was tested by a bootstrap test of 1000 replicates

and visualised in iTOL [22] as a rooted phylogram. Diversity of

the F9 adhesin protein was estimated with MEGA5. The mature

adhesin (280 aa) and adhesin lectin domain (160 aa) sequences

were aligned with ClustalW using the BLOSUM protein weight

matrix under default settings; diversity was calculated using the

Poisson model with a bootstrap confidence test for standard error

measurements (1000 replicates).

Bacterial strains, plasmids and culture conditions
Strains and plasmids used in this study are listed in Table 1. E.

coli CFT073 was isolated from the blood and urine from a woman

with acute pyelonephritis [23]. E. coli strains were routinely

cultured at 37uC on solid or in liquid lysogeny broth (LB) medium

[24] or liquid M9 minimal medium (42 mM Na2HPO4, 22 mM

KH2PO4, 9 mM NaCl, 18 mM NH4Cl, 1 mM MgSO4, 0.1 mM

CaCl2 and 0.2% (w/v) glucose). Where appropriate, media were

supplemented with ampicillin (100 mg ml21), kanamycin (100 mg

ml21) or chloramphenicol (25 mg ml21). To induce expression of

F9 fimbriae from plasmid pF9, culture media were supplemented

with 0.2% (w/v) arabinose. Plasmid transformations into E. coli

CFT073 were mediated by electroporation.

DNA manipulations and genetic techniques
Plasmid DNA was isolated using the QIAprep Spin Miniprep

kit (Qiagen). Chromosomal DNA was purified using the

GenomicPrep cell and tissue DNA isolation kit (GE Healthcare

Life Sciences). PCR was performed using Taq DNA polymerase

according to manufacturer’s instructions (Roche). Restriction

endonucleases were used according to the manufacturer’s speci-

fications (New England Biolabs). Oligonucleotide primers used in

this study were purchased from Sigma-Aldrich and are listed in

Table S1. For sequencing, PCR products were amplified using the

BigDye Terminator v3.1 Cycle DNA Sequencing Kit according to

manufacturer’s specifications (AB SCIEX), and analysed subse-

quently by the Australian Equine Genome Research Centre.

Construction of plasmid pDW11
To generate a Green Fluorescent Protein (GFP) expressing

plasmid compatible with pF9, the gfp gene from plasmid pKEN2

[25] was amplified with primers 2319 and 2320 containing 59

BamHI and SalI sites, respectively (Table S1). The PCR product

was digested by BamHI and SalI and directionally cloned into the

corresponding sites of cloning vector pACYC184. Plasmid

transformed E. coli strains were screened for GFP expression by

fluorescence microscopy.

Construction of CFT073 gene deletion mutants
E. coli CFT073 gene deletion mutants were constructed using

the l-Red mediated homologous recombination system as

previously described [26]. Briefly, the FRT-flanked kanamycin

resistance gene from pKD4 was amplified using primers contain-

ing 59 50 bp regions homologous to the start and end sequence of

the gene(s) to be deleted. The resulting approximately 1.6 kb PCR

products were introduced by electroporation into appropriate

strains expressing l-Red recombinase from pKD46. Kanamycin

resistant colonies were analysed by PCR and DNA sequencing to

confirm deletion of the relevant gene. For the construction of E.

coli CFT073 isogenic null-mutants, the kanamycin gene was

removed using the pCP20 FLP-FRT site-specific recombination

system, allowing for successive rounds of mutagenesis [26].

Protein immunoblotting
Rabbit immune serum against an F9 fimbriae over-expressing

E. coli strain was previously generated [16]. Sera were absorbed

against cell lysates of f9 negative stains and f9 null-mutants. For

western blot analysis, bacterial EDTA heat-induced outer

membrane vesicles (OMVs) were generated to enrich for the

outer membrane-associated protein fraction, using a previously

described method [27] with several modifications. Briefly, 50 ml

LB or M9 medium was inoculated with 100 ml pre-culture (grown

in the same medium) and incubated for 18 h at 37uC, 28uC or

F9 Fimbriae of UPEC
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20uC 250 rpm. Cells were harvested at 10,0006g for 10 min at

4uC and washed in 25 ml 4uC PBS. The bacterial pellet was

resuspended in 1 ml EDTA buffer (0.05 M Na2HPO4, 0.15 M

NaCl, 0.01 M ethylenediaminetetraacetic acid (EDTA), pH 7.4)

and incubated 30 min at 56uC, statically. Cells were centrifuged at

10,0006g for 10 min at 4uC and the supernatant was filtered using

a 0.22 mm PVDF low protein binding filter (Millipore). Trichlor-

oacetic acid (TCA) was added to a final concentration of 20% (w/

v) to precipitate proteins overnight at 4uC. Protein suspensions

were separated according to electrophoretic mobility using SDS-

PAGE and transferred to a polyvinylidene difluoride (PVDF)

membrane, which was subsequently incubated in 1:500 rabbit

polyclonal absorbed anti-F9 primary sera, followed by 1:10,000

goat anti-rabbit immunoglobulin G-alkaline phosphatase-conju-

gated secondary antibody (Sigma-Aldrich). Signal development

was performed using the substrate 5-bromo-4-chloro-3-indolyl-

phosphate–nitroblue tetrazolium (BCIP/NBT; Sigma-Aldrich).

59 Rapid amplification of cDNA ends (59 RACE)
The transcription start site of the f9 operon was determined

using the 59 RACE System v2.0 (Invitrogen) [28]. Experiments

were performed according to manufacturer’s specifications except

for the modifications listed below. Three gene specific primers

were used for this assay: 4235, 4236 and 4237 (Table S1). To

verify that the first nucleotide of the mRNA was a guanine, the

cDNA was dA-tailed with a dATP substitution. PCR amplification

of dA-tailed cDNA was performed using the (dT)17-adaptor

primer 4296 (Table S1). Amplified cDNA was sequenced by the

Australian Equine Genome Research Centre.

Electrophoretic mobility shift assay
Gel shift assays were performed as previously described [29].

Briefly, a DNA mixture containing an equimolar ratio of the

251 bp PCR amplified f9 promoter region and TaqI-SspI digested

pBR322 was incubated with native purified H-NS protein in 30 ml

H-NS binding buffer (40 mM HEPES pH 8, 60 mM potassium

glutamate, 8 mM magnesium aspartate, 5 mM dithiothreitol, 10%

glycerol, 0.1% octylphenoxypolyethoxyethanol, 0.1 mg/ml bovine

serum albumin) for 15 min at room temperature. DNA fragments

and DNA-protein complexes were resolved by gel electrophoresis

(0.56 Tris/Borate/EDTA buffer, 3% agarose MS gel, ran at

50 V, 4uC), stained with ethidium bromide and visualised by

ultraviolet illumination.

Table 1. Strains and plasmids used in this study.

E.coli Strain or Plasmid Relevant Characteristics Reference

Strain

CFT073 Wild-type UPEC reference strain Welch et al. 2002 [52]

CFT073f9 CFT073 c1931-c1936::kan, Kanr Ulett et al. 2007 [16]

CFT073hns CFT073 c1701::kan, Kanr Allsopp et al. 2012 [33]

CFT073f9 hns CFT073 c1931-c1936, c1701::kan, Kanr This study

CFT073D4 CFT073fim foc pap1 pap2 This study

CFT073D4 f9 CFT073fim foc pap1 pap2, c1931-c1936::kan, Kanr This study

CFT073D4 hns CFT073fim foc pap1 pap2, c1701::kan, Kanr This study

CFT073D4 f9 hns CFT073fim foc pap1 pap2, c1931-c1936, c1701::kan, Kanr This study

CFT073virF-like CFT073 c0421::kan, Kanr Allsopp et al. 2012 [33]

CFT073rpoS CFT073 c1699::kan, Kanr Allsopp et al. 2012 [33]

CFT073virF-like CFT073 c2091::kan, Kanr Allsopp et al. 2012 [33]

CFT073hns-like CFT073 c2411::kan, Kanr Allsopp et al. 2012 [33]

CFT073stpA CFT073 c3218::kan, Kanr Allsopp et al. 2012 [33]

CFT073luxS CFT073 c3244::kan, Kanr Allsopp et al. 2012 [33]

CFT073virF-like CFT073 c3744::kan, Kanr Allsopp et al. 2012 [33]

CFT073cpxR CFT073 c4864::kan, Kanr Allsopp et al. 2012 [33]

CFT073soxR CFT073 c5054::kan, Kanr Allsopp et al. 2012 [33]

MS428 K-12 MG1655fim Kjaergaard et al. 2000 [53]

Plasmids

pKD4 Template for kan gene amplification, Kanr Datsenko & Wanner 2000 [26]

pKD46 l-Red recombinase expression vector, Ampr Datsenko & Wanner 2000 [26]

pCP20 Temperature sensitive FLP expression vector, Ampr Datsenko & Wanner 2000 [26]

pBAD30 Cloning vector with ara promoter, Ampr Guzman et al. 1995 [54]

pF9 c1931-c1936 (F9CFT073)in pBAD30, Ampr Ulett et al. 2007 [16]

pBR322 Cloning vector, Ampr, Tetr Bolivar et al. 1977 [55]

pH-NS c1701 (H-NSCFT073) in pBR322, Ampr Allsopp et al. 2012 [33]

pACYC184 Cloning vector, Camr, Tetr Chang & Cohen 1978 [56]

pDW11 gfp (GFPpKEN2) in pACYC184, Camr This study

doi:10.1371/journal.pone.0093177.t001
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Microtitre plate biofilm formation assay
Bacterial biofilm formation was assessed on sterile non-coated

96-well polyvinyl chloride (PVC) microtitre plates (BD Falcon) as

previously described [30]. Briefly, cells were cultured with aeration

at various temperatures for 24 hours in 150 ml M9 medium

containing 0.2% (w/v) glucose. After incubation, cells were

washed, stained with 0.1% crystal violet for 30 min at 4uC, and

washed three additional times. Bound bacterial cells were

quantified by adding ethanol-acetone (80:20 v/v) and measure-

ment of the dissolved crystal violet at an optical density of 595 nm.

F9 Immunogold labelling and electron microscopy
Cells for immunogold labelling and transmission electron

microscopy (TEM) were prepared from liquid cultures grown

overnight at 20uC in M9 minimal medium. A glow-discharged

carbon-coated Formvar copper grid was placed on a drop of the

bacterial suspension for 1 min to allow the cells to adsorb. Grids

were washed twice on drops of water (1 min), and blocked for

30 min in blocking buffer (PBS containing 0.2% BSA, 0.2% fish

skin gelatin, 20 mM glycine). Samples were exposed to 1:25 anti-

F9 rabbit immune serum for 30 min and washed four times in

blocking buffer (5 min) before incubation with Protein A-gold

conjugate (10 nm diameter, diluted 1:60 in blocking buffer) for

30 min and four washes (5 min) in PBS. Cells were fixed with 4%

paraformaldehyde in PBS (5 min) and grids were washed four

times (2 min) in sterile ultrapure water before examination under a

JEOL 1010 TEM operated at 80 kV. Images were captured using

an analySIS Megaview III digital camera.

Glycan array analysis
Glycan array slides and whole-cell binding assays were

essentially performed as previously described [31,32]. Glycan

arrays comprised 120 unique carbohydrates (Table S2) printed on

super epoxy slides (Arrayit). All array experiments consisted of a

minimum of three independent biological repeats. E. coli strains

MS428 (pF9, pDW11) and MS428 (pBAD, pDW11) were cultured

overnight at 37uC with gentle agitation in M9 minimal medium

containing ampicillin (100 mg ml21), chloramphenicol (25 mg

ml21) and 0.2% arabinose. Post-incubation, cells were diluted to

an OD of 0.6, representing approximately 16107 CFU ml21. A

volume of 125 mL of cells was hybridised to a pre-blocked (0.1%

BSA in PBS with 2 mM MgCl2 and CaCl2, 5 mins) glycan array

for 20–30 mins at room temperature in the dark. Glycan array

slides were placed in a 50 mL tube and washed in filter sterilized

buffer 1 (PBS with 2 mM MgCl2 and CaCl2) for 5 mins, buffer 2

(buffer 1 with 0.01% tween-20) for 2 mins, and finally rinsed in

fresh buffer 1. Cells were fixed for 10 mins in PBS with 10%

formaldehyde and dried by centrifugation for 5 mins at 2006g.

The array slide was scanned using a ProScan Array microarray

scanner (Perkin Elmer) using a 488 nm argon laser. Images were

attained and analysed using the ScanArray Express software

package (Perkin Elmer). To determine minimum binding concen-

tration, glycans were printed in serial dilutions from 5 mM to

5 fM on an array slide. For competition assays, cells were pre-

treated with the glycan of interest for 15 mins prior to

hybridisation on the slide.

Statistical analyses
The frequency of intact f9 operons in different E. coli strain

collections and between different E. coli phylogenetic groups was

compared using Fisher’s exact test with a two-tailed P value.

Biofilm formation was compared between f9 encoding strains and

their isogenic f9 null mutant using a two-tailed t test. P values ,

0.05 were considered significant. For glycan array analysis,

binding was classified as RFU (relative fluorescence units) above

average background (defined as background mean plus 3 standard

deviations) and was tested for statistical significance using a two-

tailed t test with a P value ,0.001.

Results

Genetic organisation and distribution of f9 fimbrial
operons in E. coli

In order to investigate the distribution and genetic location of

the f9 operon in E. coli, we examined the genome sequence of 42

diverse E. coli strains available on the NCBI database, including

representatives of all E. coli lineages and various pathotypes

(Table 2). The E. coli species exhibits extensive genetic substructure

and can be divided into 5 major monophyletic clades (phylogroup

A, B1, B2, D and E) [21]. To evaluate the conservation and

evolutionary history of F9 fimbriae among E. coli phylogroups, a

phylogenetic tree based on multi-locus sequence typing (MLST) of

7 concatenated housekeeping genes (,9 kb) was constructed and

combined with f9 genomic context alignments (Figure 1). The f9

operon consists of six structural genes, encoding, from 59 to 39: the

major subunit, chaperone, usher, two minor subunits and an

adhesin. f9 operons containing deletions, truncations and/or

insertion elements were considered disrupted. Comparative

genomic analysis revealed that all strains possessed at least part

of the F9 encoding DNA sequences. In 60% (25/42) of E. coli

strains the f9 operon appeared intact (Figure 1 and Table 2).

Among E. coli phylogenetic groups, the f9 operon was conserved in

the majority of B1 and E strains, and to a lesser extent in B2 and D

strains. The f9 operon was disrupted in all phylogroup A strains. In

a pathotype context, the intact f9 operon was highly prevalent in

intestinal pathogenic E. coli, including adherent-invasive E. coli

(AIEC; 3/3), enteroaggregative E. coli (EAEC; 2/2), enteropatho-

genic E. coli (EPEC; 3/3) and enterohemorrhagic E. coli (EHEC;

7/8), but not in enterotoxigenic E. coli (ETEC; 0/2) (Table 2). The

f9 encoding genes were not detected in genome sequences from

other bacterial genera available in the NCBI database (except for

Shigella, a subgenus of Escherichia).

The f9 operon is flanked by the highly conserved ydeP gene

involved in acid resistance (downstream) and the relatively well-

conserved hipBA cell persistence gene cluster (upstream). The

immediate 59 region is variable, and contains a range of different

insertions and/or deletions, including three hypothetical tran-

scriptional regulators (Figure 1). Currently, there is no evidence

linking these putative regulators to the transcriptional control of f9

genes.

Prevalence of f9 genes in E. coli
Based on the genomic analysis described above, primers were

designed in conserved regions of the f9 gene cluster to screen for

the major subunit, usher and adhesin genes in two large E. coli

strain collections. These included fifty-one UPEC isolates collected

from patients presenting with urosepsis at the Princess Alexandra

Hospital (Brisbane, Australia) as well as seventy-two strains of the

well-defined and diverse ECOR reference collection. In the UPEC

collection, 80% (41/51) of strains screened positive by PCR for all

three f9 genes (Figure 2A). A further 16% (8/51) screened positive

for at least one f9 gene, while 4% (2/51) of strains screened

negative for all genes. In the ECOR collection, 61% (44/72) of

strains screened positive for all three f9 genes, 29% (21/72)

screened positive for at least one f9 gene and 11% (8/72) did not

yield any positive PCR results. F9 operon prevalence (as judged by

screening positive for the major subunit, usher and adhesin genes)

F9 Fimbriae of UPEC
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Table 2. E. coli genomes analysed in this study.

E.coli Strain Phylogroup F9 Status* Reference

UPEC

CFT073 B2 + Welch et al. 2002 [52]

NA114 B2 + Avasthi et al. 2011 [57]

UTI89 B2 D Chen et al. 2006 [58]

536 B2 D Hochhut et al. 2006 [59]

IAI39 D D Touchon et al. 2009 [60]

UMN026 D + Touchon et al. 2009 [60]

ABU

83972 B2 + Zdziarski et al. 2010 [61]

NMEC

IHE3034 B2 + Moriel et al. 2009 [62]

S88 B2 D Touchon et al. 2009 [60]

CE10 D D Lu et al. 2011 [63]

APEC

APEC01 B2 + Johnson et al. 2007 [64]

AIEC

LF82 B2 + Miquel et al. 2010 [65]

NRG 857C B2 + Nash et al. 2010 [66]

UM146 B2 + Krause et al. 2011 [67]

EAEC

55989 B1 + Touchon et al. 2009 [60]

042 D + Chaudhuri et al. 2010 [68]

EPEC

O127:H6 E2348/69 B2 + Iguchi et al. 2009 [69]

O55:H7 CB9615 E + Zhou et al. 2010 [70]

O55:H7 RM12579 E + Kyle et al. 2012 [71]

ETEC

O78:H11 H10407 A D Crossman et al. 2010 [72]

E24377A B1 D Rasko et al. 2008 [73]

EHEC

O26:H11 11368 B1 + Ogura et al. 2009 [74]

O103:H2 12009 B1 D Ogura et al. 2009 [74]

O111:H- 11128 B1 + Ogura et al. 2009 [74]

O157:H7 EDL933 E + Perna et al. 2001 [75]

O157:H7 Sakai E + Hayashi et al. 2001 [76]

O157:H7 EC4115 E + Eppinger et al. 2011 [77]

O157:H7 TW14359 E + Kulasekara et al. 2009 [78]

O157:H7 Xuzhou21 E + Xiong et al. 2012 [79]

Environmental

SMS-3-5 D D Fricke et al. 2008 [80]

Commensal

ATCC 8739 A D Joint Genome Institute [81]

HS A D Rasko et al. 2008 [73]

IAI1 B1 + Touchon et al. 2009 [60]

SE11 B1 + Oshima et al. 2008 [82]

W B1 + Archer et al. 2011 [83]

ED1a B2 D Touchon et al. 2009 [60]

SE15 B2 + Toh et al. 2010 [84]

Laboratory

BL21(DE3) A D Jeong et al. 2009 [85]

F9 Fimbriae of UPEC
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was significantly higher (P,0.05) in UPEC isolates compared to

the ECOR collection (Figure 2A). PCR data from the two E. coli

collections were merged to evaluate f9 prevalence relative to strain

phylogenetic group (Figure 2B). Consistent with the genome-

sequenced strains, the frequency of intact f9 operons in

phylogroup A strains was significantly lower in comparison to

strains belonging to other phylogroups (P,0.05). The F9 operon

was detected in 100% of phylogroup B1 strains and the majority

(.70%) of strains from phylogroup B2, D or E.

Transcription of the f9 operon is repressed by H-NS
We previously detected very weak expression of F9 fimbriae in

UPEC strain CFT073fim foc cultured at 37uC [16]. However, to

date there have been no reports of functional F9 fimbriae

expression in wild-type UPEC. To investigate the genetic basis

of f9 gene regulation in UPEC, we employed a previously

described panel of CFT073 isogenic single gene deletion mutants

lacking a selection of defined/putative regulatory genes (c0421

[virF_like], c1699 [rpoS], c1701 [hns], c2091 [virF_like], c2411

[hns_like], c3218 [stpA], c3244 [luxS AI-2], c3744 [virF_like], c4864

[cpxR] and c5054 [soxR]) [33]. Expression of the F9 fimbrial major

subunit protein was assessed by western blot analysis of CFT073

wild-type and mutant strains employing an F9 specific antiserum.

In this experiment, strong expression of the F9 major subunit

protein was only detected in the CFT073hns mutant strain, but not

in any of the other regulator mutants following growth in LB broth

at 37uC (Fig. 3A). To confirm these results, the hns mutant strain

(referred to as CFT073hns) was complemented with the H-NS

expressing plasmid pH-NS. No detectable F9 major subunit

protein was detected in CFT073hns(pH-NS) (Figure 3B). Addi-

tionally, the strong F9 major subunit signal was absent in a

CFT073f9 hns double mutant. Interestingly, a faint band similar in

size to the F9 major subunit was observed in CFT073f9 hns,

suggesting some non-specific cross reactivity of the F9 antiserum

with a similar sized protein. Since H-NS negatively controls the

expression of various distinct fimbrial operons, this observation

could be the result of alleviation of repression of an F9 related

fimbrial type [34]. We addressed this by constructing a mutant

deleted for gene clusters encoding type 1, F1C, P1 and P2 fimbriae

(referred to as CFT073D4), and a CFT073D4 strain deleted for the

f9 genes (CFT073D4 f9). Indeed, mutation of the hns gene in

CFT073D4 and CFT073D4 f9 resulted in the complete loss of this

cross-reacting band (Figure 3B). Combined, these results demon-

strate that H-NS represses the expression of F9 fimbriae in

CFT073.

H-NS binds to the promoter region of the f9 operon
In order to determine whether H-NS influences f9 gene

transcription by directly binding to the promoter region, the f9

promoter was characterised using 59-RACE and investigated for

H-NS interaction by electrophoretic mobility shift assays. The f9

transcription start site was identified as a guanine residue, 251

nucleotides upstream of the f9 major subunit gene start codon

(Figure 4A). The transcription start site was preceded by a strong

210 promoter consensus sequence (CATAAT) and a moderate 2

35 promoter consensus sequence (TAGTCG) with an 18 bp spacer

region. In silico analysis of the promoter region discerned a

ribosomal binding site (RBS) directly upstream of the translation

initiation site, and identified six putative H-NS binding motifs at

positions 2111, 2103, +8, +14, +57 and +89 (Figure 4A) [35]. To

investigate f9 promoter/H-NS interactions, the 251 bp promoter

region was amplified by PCR and mixed with TaqI-SspI-digested

pBR322 DNA (containing the H-NS recognised bla promoter).

The DNA mixture was incubated with increasing concentrations

of purified H-NS protein and analysed by mobility shift

electrophoresis. The f9 promoter region and the positive control

bla-promoter fragment were equally impeded in gel migration in

the presence of increasing concentrations of H-NS (Figure 4B). In

contrast, the mobility of pBR322 fragments lacking the bla-

promoter sequence was not altered in the presence of H-NS.

These results demonstrate that H-NS binds to the f9 promoter

region.

Expression of F9 fimbriae in UPEC CFT073 is temperature-
dependent

The global regulator H-NS modulates the expression of a large

subset of genes in response to external stimuli such as temperature

[36,37]. To evaluate whether temperature had an effect on the

expression of F9 fimbriae, CFT073 and the isogenic f9 null mutant

were cultured at various temperatures and examined by western

blot analysis employing an F9 specific antiserum. No protein

bands were detected when CFT073 was cultured at 37uC or 28uC,

but at 20uC an 18.3 kDa band corresponding to the mature F9

major subunit was observed (Figure 5). This band was not detected

in the CFT073f9 null-mutant at all temperatures examined,

confirming the identity of the band as the F9 major subunit

protein (Figure 5). To strengthen these findings we also examined

F9 fimbriae expression on the cell surface by immunogold electron

microscopy. We detected F9 fimbriae on the surface of CFT073D4

but not CFT073D4 f9 following culture at 20uC (Fig. 5B and 5C).

These data represent the first evidence of F9 fimbrial expression by

UPEC, and based on the temperature expression profile suggest a

role for F9 fimbriae outside the mammalian host.

F9 fimbriae mediate biofilm formation in UPEC strain
CFT073

We previously demonstrated that F9 fimbriae mediate a strong

biofilm on abiotic surfaces using a plasmid-based system in a

recombinant E. coli strain [16]. To determine whether F9 fimbriae

expressed by wild-type UPEC are involved in biofilm formation,

Table 2. Cont.

E.coli Strain Phylogroup F9 Status* Reference

B REL606 A D Jeong et al. 2009 [83]

K-12 MG1655 A D Blattner et al. 1997 [86]

K-12 DH10b A D Durfee et al. 2008 [87]

K-12 BW2952 A D Ferenci et al. 2009 [88]

UPEC: uropathogenic E. coli, ABU: asymptomatic bacteriuria E. coli, NMEC: neonatal meningitis E. coli, APEC: avian pathogenic E. coli, AIEC: adherent-invasive E. coli, EAEC:
enteroaggregative E. coli, EPEC: enteropathogenic E. coli, ETEC: enterotoxigenic E. coli, EHEC: enterohaemorrhagic E. coli. *F9 status: + intact operon, D disrupted operon.
doi:10.1371/journal.pone.0093177.t002
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we investigated CFT073 and CFT073f9 for biofilm formation at

20uC using a microtitre plate assay. Consistent with our F9

fimbrial expression findings using western blot analysis and

immunogold-TEM, the expression of F9 fimbriae at 20uC by

CFT073 correlated with significant biofilm formation compared to

CFT073f9 under these growth conditions (P,0.001; Figure 6).

Complementation of CFT073f9 with the F9 fimbrial expression

plasmid pF9 restored the strong biofilm phenotype. These data

confirm that F9 fimbriae promote significant biofilm growth on

abiotic surfaces by wild-type CFT073 at 20uC.

The F9 fimbrial adhesin is highly conserved and displays
receptor specificity to Galb1-3GlcNAc terminating
glycans

The predicted F9 adhesin is encoded by the last gene in the f9

operon and contains a characteristic two-domain structure

comprising a C-terminal fimbrial integration domain and an N-

terminal receptor-binding region. Comparison of the amino acid

sequence of the full-length F9 adhesin among the 25 E. coli strains

that contained an intact f9 operon revealed a high degree of

conservation, with a mean diversity of 0.01360.004 amino acid

Figure 1. Conservation and genetic organisation of the E. coli f9 fimbrial operon in an evolutionary context. Left: The phylogeny of 42
E. coli strains is displayed as inferred by the Neighbour-Joining method on the concatenated nucleotide sequence of 7 housekeeping genes (9,015 nt
over an equal number of positions). E. coli strains are colour-coded according to phylogroup (A, B1, B2, D and E). The scale on the phylogenetic tree
represents the number of nucleotide substitutions per site. Closely related strains with identical f9 genetic context are collapsed and included E. coli
K-12 (n = 3; strains MG1655, DH10b, BW2952), E. coli B (n = 2; strains BL21(DE3), B REL606), E. coli O55 (n = 2; strains CB9615, RM12579), E. coli O157
(n = 5; strains EDL933, Sakai, EC4115, TW14359, Xuzhou21). Right: Alignment of the f9 genes (blue) and their flanking genes. The f9 operon is flanked
39 by the highly conserved ydeP gene (grey) and 59 by the hipBA operon (red). The direct 59 region of the f9 operon is variable, and involves three
distinct hypothetical transcriptional regulators (green, purple, and lilac). The percentage DNA sequence identity is indicated in grey. The scale on the
aligned genetic context represents DNA length in kilobase pair.
doi:10.1371/journal.pone.0093177.g001
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substitutions per site over 280 positions. More specific interroga-

tion of the receptor-binding domain of the F9 adhesin revealed

even greater amino acid sequence conservation, with a mean

diversity of 0.00360.002 substitutions per site over 160 positions.

The above analysis demonstrates that the F9 adhesin sequence

is highly conserved, and indicates that the F9 adhesin from

CFT073 can be used to define the overall receptor-binding

characteristics of F9 fimbriae. We therefore employed a glycan

array in combination with a F9 over-expressing E. coli strain

labelled with GFP (MS428[pF9, pDW11]) to evaluate the binding

specificity of F9 fimbriae to different carbohydrates. In this assay,

F9 fimbriae mediated specific binding to Galb1-3GlcNAc

terminating structures, including lacto-N-tetraose (Galb1-

3GlcNAcb1-3Galb1-4Glc), globotriose (Gala1-4galb1-4Glc) and

the globotriose terminal disaccharide (GalNAcb1-3Gal) (P,0.05).

The presence of fucose in Galb1-3GlcNAc glycans eliminated or

reduced affinity by at least 100-fold (data not shown). Of the

glycans that were bound by F9 fimbriae, lacto-N-tetraose displayed

the highest affinity. A glycan competition analysis using 50 mM

free lacto-N-tetraose resulted in no observable F9 fimbriae-

mediated binding to any of the glycans on the array. Taken

together, these data provide the first evidence for Galb1-3GlcNAc

glycans as specific receptors for F9 fimbriae, and identify lacto-N-

tetraose as a high affinity glycan.

Discussion

Bacterial adhesins mediate attachment to host tissues and

abiotic surfaces and provide the first step in colonisation and

biofilm formation. Despite the large repertoire of CU fimbriae

encoded by UPEC [8], there are only a few well-studied examples

of fimbriae that are directly associated with pathogenesis or

mediate tissue tropism. Many UPEC fimbriae are cryptic in nature

and have not been thoroughly characterised. We previously

described F9 fimbriae in UPEC as a functional CU fimbrial type

promoting formation of E. coli biofilms [16] and have recently

demonstrated that they are closely related to the type 1 and F1C/S

fimbriae [38], which are both involved in colonisation of the

human urinary tract [3]. In this study, the distribution and

conservation of F9 fimbriae in diverse E. coli lineages was

investigated and evaluated in an evolutionary and pathotype

associated context. Evolutionary diversity analysis of the F9

adhesin sequence revealed a high conservation of the receptor

recognising lectin domain. Furthermore, H-NS was identified as a

temperature dependent negative regulator of F9 expression by

binding directly to the f9 promoter region. F9 fimbriae were

expressed by CFT073 at 20uC and mediated significant biofilm

formation at this temperature. This is the first report of functional

F9 expression in wild-type E. coli, and provides the first evidence

that F9 fimbriae specifically recognise Galb1-3GlcNAc and lacto-

N-tetraose glycans.

E. coli population genetics have identified five major monophy-

letic clades (phylogroups A, B1, B2, D and E) [21]. Despite the

high frequency of f9 DNA sequences in the E. coli species, the

conservation of the f9 operon between E. coli phylogenetic groups

varied significantly. A genomic comparison of the f9 operon from

42 E. coli genomes showed that intact f9 operons were particularly

prevalent in phylogenetic group B1 and E, and to a lesser degree

in phylogroups B2 and D. In strains from phylogenetic group A,

all f9 operons were disrupted. Variation was also observed among

E. coli pathotypes, with the f9 fimbrial genes particularly conserved

in intestinal pathogenic isolates representing AIEC, EAEC, EPEC

and EHEC, but not ETEC, suggesting a potential role in the

pathogenic lifestyle of these bacteria. Indeed, signature-tagged

mutagenesis screens using EHEC strains of serotype O157:H7 and

O26:H- have previously identified insertion mutants in the f9 gene

cluster that were significantly impaired for intestinal colonisation

in young calves [39,40]. The f9 operon was moderately conserved

in UPEC genomes. A PCR screen of the 51 isolates in our UPEC

collection suggested that the f9 operon is intact in 80% of the

strains, significantly higher than the 61% prevalence of intact f9

operons in the 72 strains of the diverse and well defined ECOR

reference collection. In a phylogenetic context, the results from the

f9 gene prevalence screen of the two collections were consistent

with the genomic data. F9 encoding sequences were not found in

any other species (except for Shigella, a subgenus of Escherichia),

indicating this fimbrial operon is unique to E. coli. The ubiquity of

f9 genes in extant E. coli strains suggests that the f9 operon is

ancient and was present in the E. coli common ancestor.

Figure 2. Prevalence of f9 genes in E. coli. Strains of the E. coli reference ECOR (n = 72) and urosepsis UPEC (n = 51) collections were
screened by PCR for f9 major subunit, usher and adhesin genes. Bars in dark grey represent strains screening positive for all genes screened
for (indicating the presence of an intact f9 operon), light grey bars indicate presence of at least one of the screened genes. f9 genes are pervasive in E.
coli, albeit not exclusively in an intact polycistronic conformation. (A) Intact f9 operons are signifcantly more prevalent in UPEC strains (80%) than
ECOR strains (61%)(P,0.05). (B) To evaluate F9 prevalence in a evolutionary context, strains from both collections were categorised according to
phylogenetic group. Intact f9 operons were prevalent in 100% of phylogroup B1 strains, and moderatly prevalent in strains belonging to phylogroups
B2, D and E. The frequency of an intact f9 operon was signifanctly lower in phylogenetic group A in comparison to the other phylogroups (P,0.05).
doi:10.1371/journal.pone.0093177.g002
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H-NS is a histone-like DNA-binding protein that shows affinity

for A-T rich and bent nucleation sites on DNA [41]. In this study,

several lines of evidence demonstrated a role for H-NS in the

regulation of F9 fimbrial expression. In a CFT073 hns mutant

background, F9 expression was de-repressed, and this effect could

be reversed through the introduction of a plasmid containing the

hns gene. In addition, H-NS bound to a 251 bp DNA fragment

containing the mapped f9 promoter region and a positive control

bla-promoter fragment with equal affinity. H-NS has been shown

to repress multiple other virulence-associated genes in UPEC,

including genes encoding alpha-hemolysin, iron uptake systems,

fimbriae and autotransporter proteins [33,41–43]. In E. coli K-12,

several cryptic chaperone-usher fimbrial genes are also repressed

by H-NS [34]. The data presented here is the first direct

demonstration that H-NS represses F9 fimbriae, and is consistent

with a role for H-NS in the regulation of multiple UPEC virulence

factors.

F9 fimbriae expression by UPEC CFT073 also displayed a

temperature-dependent profile. At 20uC, we detected expression

of the F9 major fimbrial subunit protein by western blot and F9

Figure 3. H-NS is a negative regulator of F9 fimbriae expression. (A) Western blot analysis of CFT073 and 10 isogenic defined/putative
regulatory gene deletion mutants using an F9 specific antiserum. A strong-reacting band consistent with the size of the mature F9 major subunit
(,18.3 kDa, indicated by an arrow) was observed in CFT073 hns (CFT073_c1701) but not in the other regulator deletion mutants. (B) Western blot
analysis of F9 fimbriae expression in CFT073 f9 and hns null mutants cultured at 37uC. The F9 specific antiserum reacted strongly with the mature F9
major subunit (F9 MS indicated by an arrow, ,18.3 kDa) in over-expressing strain CFT073f9 (pF9). Repression of the f9 operon is alleviated in the
CFT073hns mutant. This signal is lost again in isogenic null mutant CFT073f9 hns or in the H-NS over-expressing complemented strain CFT073hns (pH-
NS), demonstrating F9 fimbriae expression is negatively regulated by H-NS. The faint band in CFT073f9 hns suggests cross reactivity with a related
fimbrial subunit, and is indeed lost in the isogenic fim, foc, pap1, pap2 null mutant CFT073D4f9 hns.
doi:10.1371/journal.pone.0093177.g003

Figure 4. The H-NS protein binds to the f9 promoter region. (A) Nucleotide sequence and features of the F9 promoter region of
uropathogenic E. coli CFT073. 59 RACE analysis identified the transcription start site as a guanine residue (labelled as +1), 251 nucleotides upstream of
the start codon of the f9 major subunit (+252). The predicted ribosomal binding site (RBS), 210 and 235 promoter elements are highlighted in
boldface. Six putative H-NS binding sites (positions 2111, 2103, +8, +14, +57 and +89) were identified with the Virtual Footprint bacterial promoter
analysis tool [35]. (B) Electrophoretic band shift of the amplified 251 bp f9 promoter and TaqI-SspI digested pBR322 DNA in the presence of various
concentrations H-NS (0 mM, 1 mM, 2 mM, 3 mM, 4 mM and 10 mM). Similar to the bla promoter positive control, the signal of the f9 promoter
diminishes as its gel migration is impeded by increasing H-NS concentrations, demonstrating that H-NS binds directly to the f9 promoter sequence.
Migration of bla-negative pBR322 fragments was not affected by H-NS.
doi:10.1371/journal.pone.0093177.g004
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fimbriae structural organelles on the cell surface by immunogold

electron microscopy. This F9 expression profile correlated with a

strong biofilm phenotype for CFT073 grown under these

conditions. Previous studies in EHEC O157:H7 using a chromo-

somally integrated lacZ-f9 promoter fusion have also suggested F9

temperature-dependent regulation, with stronger activity of the f9

promoter observed at 28uC versus 37uC [18]. In addition, it has

been shown that the expression of the F9 major subunit is

increased at 28uC compared to 37uC, however expression levels

were too low to detect F9 fimbriae by immunofluorescence [18].

While F9 fimbrial expression in a recombinant E. coli K-12 strain

promoted enhanced binding to bovine rectal epithelial cells, there

were no significant differences in colonization of the terminal

rectum of cattle by a wild-type and F9 mutant strain, suggesting

that F9 fimbriae are not responsible for EHEC O157 rectal

tropism in cattle [18]. Combined, these data suggest that F9

fimbriae contribute to the E. coli lifestyle outside the mammalian

host, potentially involving colonisation of epidermal surfaces and

persistence in the environment through biofilm formation.

Two other types of E. coli adhesins that are expressed strongly at

20uC have also been described, namely Mat (or ECP) fimbriae and

curli fibres [44,45]. Mat fimbriae mediate biofilm formation by

neonatal meningitis E. coli and UPEC at low temperature [46,47]

The expression of Mat fimbriae has also been observed more

generally in E. coli following cultivation in DMEM, suggesting that

temperature-mediated regulation is linked to specific growth

conditions [44]. Curli are also strongly expressed at 20uC and

associated with biofilm formation [48], however to the best of our

knowledge CFT073 has not been shown to produce curli. In our

experiments, although the reduction in biofilm formation at 20uC
between wild-type CFT073 and the CFT073f9 mutant was

significant, CFT073f9 still formed a reasonable biofilm (Figure 6).

This suggests that CFT073 produces other biofilm formation

mechanisms under these conditions, which may include Mat

fimbriae. It remains to be determined whether Mat fimbriae are

produced by CFT073 at 20uC under the conditions used in our

experiments, whether F9 and Mat fimbriae can be co-expressed at

20uC, and if there are additional layers of regulatory control in E.

coli strains that have the capacity to express both of these fimbriae.

The sequence of the F9 adhesin lectin domain was shown to be

highly conserved in E. coli strains from different phylogenetic

lineages. In order to examine the receptor binding specificity of F9

fimbriae, a glycan array containing 120 structures was utilized.

The glycans on the array represented host cell surface glycocon-

jugates including terminal galactose, mannose, fucosylated and

sialylated structures and glycosaminoglycans [31,32]. These

glycans mimic those found on mucosal surfaces, the extracellular

matrix, blood antigens and cells of the immune system. The

analysis revealed F9 fimbriae bind to Galb1-3GlcNAc containing

glycans, with lacto-N-tetraose identified as a high affinity glycan.

Epithelial cells of the human urinary tract and kidney are rich in

the globoseries glycolipids [49], whereas lacto-N-tetraose is a

common oligosaccharide found in human milk [50]. In addition,

lacto-N-tetraose is the oligosaccharide moiety of the lactotetrao-

sylceramide glycosphingolipid receptor present in human gastric

epithelium, which is recognised and bound to by Helicobacter pylori

[51]. Given that many H-NS repressed genes encode virulence

factors associated with human infection, it is possible that F9

fimbriae expression in the human host could also contribute to

colonisation. In this respect, we were unable to demonstrate

binding of a recombinant E. coli strain over-expressing F9 fimbriae

to human exfoliated urothelial cells, human T24 bladder epithelial

cells, human A498 kidney epithelial cells, human Caco-2 intestinal

epithelial cells, or human type A red blood cells (data not shown).

Thus, the Galb1-3GlcNAc glycan-containing target cells bound to

by F9 fimbriae in the mammalian host remain to be identified.

In conclusion, we have shown that the f9 fimbriae genes are

common to many different E. coli lineages and pathotypes and are

regulated by H-NS and temperature. F9 fimbriae bind with high

affinity to Galb1-3GlcNAc glycans, including lacto-N-tetraose.

Finally, UPEC CFT073 expresses F9 fimbriae at 20uC which

Figure 5. Expression of F9 fimbriae is temperature-dependent.
(A) Western blot analysis of wild-type CFT073 and isogenic f9 null-
mutants cultured at various temperatures. The F9 specific antiserum
reacts with the F9 mature major subunit protein (,18.3 kDa) in over-
expressing strain CFT073f9 (pF9). No expression is observed in wild-type
CFT073 when cultured at 37uC or 28uC. F9 expression is observed in
CFT073 at 20uC, and lost again in isogenic null-mutant CFT073f9,
illustrating the temperature dependent regulation of F9 fimbriae in
UPEC. The mature F9 major subunit (MS) is indicated by an arrow. The
22 kDa higher molecular weight cross-reacting band detected from
CFT073 following growth at 20uC is consistent with the size of the
unprocessed F9 major subunit protein. TEM micrograph of CFT073D4
(B) and CFT073D4 f9 (C) labelled with immunogold anti-F9 serum after
growth at 20uC. Scale bars (500 nm).
doi:10.1371/journal.pone.0093177.g005
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correlates with strong biofilm formation on abiotic surfaces.

Further characterisation of F9 fimbriae is now required to identify

its potential role in the colonisation of specific biotic surfaces.
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