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Ferrets exclusively synthesize Neu5Ac and express
naturally humanized influenza A virus receptors
Preston S.K. Ng1, Raphael Böhm1, Lauren E. Hartley-Tassell1, Jason A. Steen2, Hui Wang3, Samuel W. Lukowski4,5,

Paula L. Hawthorne5, Ann E.O. Trezise5, Peter J. Coloe6, Sean M. Grimmond7,8, Thomas Haselhorst1,

Mark von Itzstein1, Adrienne W. Paton3, James C. Paton3 & Michael P. Jennings1

Mammals express the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolyl-

neuraminic acid (Neu5Gc) on cell surfaces, where they act as receptors for pathogens,

including influenza A virus (IAV). Neu5Gc is synthesized from Neu5Ac by the enzyme

cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this

enzyme is inactive and only Neu5Ac is produced. Ferrets are susceptible to human-adapted

IAV strains and have been the dominant animal model for IAV studies. Here we show that

ferrets, like humans, do not synthesize Neu5Gc. Genomic analysis reveals an ancient, nine-

exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia

members of the Carnivora. Interactions between two human strains of IAV with the sia-

lyllactose receptor (sialic acid—a2,6Gal) confirm that the type of terminal sialic acid con-

tributes significantly to IAV receptor specificity. Our results indicate that exclusive expression

of Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains.
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I
nfluenza A virus (IAV) remains the most serious infectious
disease threat to human health. Seasonal IAV kills 250,000–
500,000 people each year worldwide. However it is the

potential for the emergence of highly virulent pandemic IAV
strains, such as the 1918A/H1N1 strain that killed 20–40 million
people1, which illustrates the grave risk posed by this pathogen.
IAV is a member of the family Orthomyxoviridae and has a
negative-sense, single-stranded and segmented RNA genome.
IAV antigenic diversity is high, with mutations accumulating
during viral replication (antigenic drift) and by exchange of
genomic material between IAVs co-infecting the same cell
(antigenic shift). Therefore IAVs are further subtyped based on
antigenic differences in the two membrane glycoproteins:
haemagglutinin (HA) and neuraminidase (NA). HA is
responsible for the initial attachment of the virus to the host
cell membrane by binding to sialic-acid (SA) receptors, while NA
ensures mobility of virus in the respiratory tract and release of
new viral progeny by its sialic-acid cleavage activity2. Sequence
variations in these proteins may alter IAV host range and
virulence by changing their specificity for the spectrum of distinct
HA3 receptor structures and NA substrates4 on the cells, tissues
and organs of vertebrate hosts. This continual and rapid IAV
evolution results in the emergence of new strains from animal
reservoirs to infect humans; the lack of protective immunity from
previous IAV infections; the requirement for regular
reformulation of IAV vaccines; and the generation of IAV
resistance to anti-viral drugs5.

Detailed study of human IAV was not possible until 1933 when
it was first isolated by infection of ferrets (Mustela putorius furo)
with nasal washings from human IAV patients6. Over the past 80
years ferrets have remained the dominant model system7 for
study of IAV due to their unique susceptibility to human IAV
strains8. The majority of studies of IAV host species adaptation
has focused on the type of linkage between the sialic acid and the
penultimate galactose residue, SAa2,6Gal or SAa2,3Gal, and the
distribution of these receptors in the host9,10. The susceptibility of
ferrets for human IAV strains has been ascribed to its similar
distribution of SAa2,6-linkage receptors in the respiratory tract11.
The ferret continues to serve as the key animal model system for
IAV, including for a series of recent, high-profile transmission
studies12,13. A complete understanding of ferret susceptibility to
IAV is therefore essential for research on this significant human
pathogen.

Neu5Gc is present in most vertebrates14,15, but is absent in
humans16,17 due to a mutation that inactivates cytidine
monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)18,
the enzyme that converts cytidine monophosphate-N-
acetylneuraminic acid (CMP-Neu5Ac) to Neu5Gc19. There is a
growing recognition that the type of terminal sialic acid also plays a
role in IAV–receptor interaction10,20.

Here we show that ferrets, like humans, lack an active CMAH
and do not produce Neu5Gc. We show that most of the ferret
CMAH gene has been deleted by an ancient mutation shared by
several other members of the order carnivora. Analyses of whole
human IAV with fully characterized IAV receptor structures
confirm the importance of Neu5Ac in both HA and NA
functions, and that exclusive expression of Neu5Ac is a
contributing factor to the unique suitability of ferrets as a model
for human-adapted IAV.

Results
Ferrets do not express Neu5Gc. We developed the hypothesis
that a contributing factor to the susceptibility of ferrets to human
strains of IAV may be the type of sialic acid they express. To
explore this hypothesis, initial studies were conducted using

serum samples from ferret and other species known to express
either Neu5Gc or Neu5Ac14. Western blot with Neu5Gc-specific
immunoglobulin (Ig)Y antibody revealed reactivity in murine and
bovine serum, but not human or ferret samples (Fig. 1a). Western
blots of samples from these species were probed with Sambucus
nigra (SNA), a lectin that does not discriminate between these two
types of sialic acid (Fig. 1b), demonstrating that sialic-acid
residues are present on serum glycoproteins in all species. The
same serum samples were analysed by high-performance liquid
chromatography to quantitate the amount and type of sialic acid
present. Both ferret and human serum had Neu5Ac, but no
detectable Neu5Gc, while mouse serum contained predominantly
Neu5Gc (Fig. 1c). Further investigation was conducted using
cryopreserved tissue sections from brain, lung, kidney, liver and
spleen prepared from healthy ferrets and mouse. These sections
were probed with Neu5Gc-specific IgY antibody, and also with
SubAB, an AB5 toxin with a B subunit that selectively binds
Neu5Gc carbohydrate structures10,21. These studies revealed
abundant staining of Neu5Gc in all mouse tissues using both
methods (Fig. 1d; Supplementary Fig. 2a–g), but no staining was
observed in the equivalent ferret tissue samples (Fig. 1d;
Supplementary Fig. 2h,i). Taken together, these data show that,
like humans, ferrets do not express Neu5Gc.

The ferret CMAH gene is deleted. To determine the molecular
basis for the lack of Neu5Gc expression in a ferret, we investi-
gated the ferret CMAH gene. Synteny in the CMAH region is well
conserved in mammalian genomes, with the same genes present
in the CMAH flanking regions of eukaryotes (Fig. 2a) and the
ferret (Fig. 2b). The coding sequence of CMAH is also well
conserved. Primer sets to amplify exons from all mammalian
CMAH genes were designed based on the most conserved exons
(exons 3, 5, 8, 11 and 12; Fig. 2c). All of the exons amplified from
the carnivore species cat and dog genomic DNA. All except exon
3 amplified from human genomic DNA. This region corresponds
to the deletion event that inactivated the human CMAH gene
resulting in the loss of Neu5Gc biosynthesis18. Only exons 11 and
12 amplified from ferret DNA, suggesting that there may be a
large deletion in ferret CMAH. A ferret bacterial artificial
chromosome (BAC) clone library was screened using probes
specific for conserved regions flanking CMAH in related
carnivore genomes (Fig. 2b), resulting in the isolation of the
BAC clone 182P23. Sequence analysis of this clone facilitated
design of a probe that was used to isolate BAC clone 446P7. These
two BAC clones were sequenced using single-molecule real-time
(SMRT) sequencing technology, resulting in two complete
sequences that overlapped and covered the entire CMAH
region. Sequence analysis identified a large deletion that results
in loss of the first nine coding-sequence exons of CMAH in the
ferret genome, and multiple stop mutations in exon 11. The
deletion is consistent with the exon PCR amplification data
(Fig. 2c). Primers were designed at the boundaries of the deleted
region and used in PCR to confirm that the deletion exists in
independent individual ferrets. Recent data available from the
Broad ferret genome project (http://www.broadinstitute.org/
annotation/genome/ferret, accessed 9 July 2014) are consistent
with data presented here, but do not currently annotate the
CMAH deletion. We conclude that the lack of Neu5Gc expression
in ferrets is due to deletion of the majority of the CMAH gene.

The ferret CMAH deletion is an ancient mutation. To deter-
mine the evolutionary origin of the CMAH-deletion event in
ferret, we used the same CMAH exon primer set to examine
genomic DNA from 15 Mustelidae species selected to cover all
genera. All showed the same profile as ferret (Supplementary
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Fig. 3a–c), suggesting that the CMAH-deletion event occurred
prior to the divergence of the Pinnipedia and Musteloidea
lineages. The analysis was then widened to include the other
members of the Arctoid lineages, Ursidae and Pinnipedia22, and
revealed that all members of the Pinnipedia tested also shared the

same CMAH deletion as the Musteloids (Supplementary Fig. 3b).
The Ursidae species Ursus americanus (American black
bear) contained all CMAH exons tested as did Urocyon
cinereoargenteus (grey fox), which is the basal species of the
Canidae family23 (Supplementary Fig. 3a,b). We propose that the
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Figure 1 | Analysis of sialic acid in ferret and other mammalian species. (a) Western blot analysis showing the absence/presence of Neu5Gc in

serum samples (10 mg) when tested with anti-Neu5Gc antibody. (b) Western blot analysis of serum samples when tested with sialic-acid-specific lectin,

SNA (c) Sugar analysis showing amount of Neu5Ac and Neu5Gc in serum samples. (d) Double immunostaining of Neu5Gc in mouse and ferret

kidney tissue using chicken anti-Neu5Gc (Neu5Gc panels) and SubAB overlay followed by rabbit anti-SubA (SubAB panels). In a and b, F¼ ferret,

H¼ human, B¼ bovine and M¼mouse serum, respectively; þ or � represent samples with or without neuraminidase treatment (see Supplementary

Fig. 1 for full western blot images).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6750 ARTICLE

NATURE COMMUNICATIONS | 5:5750 | DOI: 10.1038/ncomms6750 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


CMAH mutation occurred in the infraorder Arctoidea after
divergence of the Ursidea from the Pinnipedia and Musteloidea
lineages, dating the mutation to between 38 and 40 million years
ago24. Our data are consistent with and support studies that
propose that the Ursidea descended from an Arctoidea ancestor
separate from Pinnipedia and Musteloidea24,25. The absence of
Neu5Gc expression has also been observed in chickens26,
reptiles14, various species of birds14 (with the exception of
ducks27), the platypus14, in western dog breeds28,29 and recently
in new world monkeys30. An inactive CMAH allele results in loss
of CMAH expression that generates blood group antigen
differences in cats31,32. It has been proposed that the loss of
Neu5Gc expression in humans may have resulted from selective
pressure from pathogens that utilize sialic-acid-containing
receptors33–35. Our finding that two major families of
carnivores also lack Neu5Gc expression, and that this event

preceded the human CMAH mutation, which occurred only
B3 million years ago34, suggests that this selective pressure has
been present throughout evolutionary history of vertebrates. This
finding is also consistent with the hypothesis that inactivation of
CMAH is a crucial speciation event, as this mutation may
generate reproductive incompatibility36.

Terminal sialic-acid type and linkage affect IAV interactions.
To a large extent, IAV host range has been seen through the
prism of IAV receptor type and distribution in the host.
The location of these receptors in host organs and tissues dictate
the type of pathology. Sialic-acid receptor recognition by both HA
and NA play an important role in maintaining a balance for
successful infection37,38. In addition to the linkage type, that is
SAa2,3Gal or SAa2,6Gal, the type of sialic acid has also been
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Figure 2 | Genomic analysis of a deleted region in the ferret CMAH gene responsible for the absence of Neu5Gc in both ferrets and humans.

(a) Synteny in the CMAH region of mouse, human and cat genomes. (b) Representation of the CMAH region of the ferret genome characterized in this

study. Black bars represent region spanned by BAC clones 446P7 and 182P23. Blue bars indicate location of probes used in screening BAC library. Arrows

indicate position of primers used to amplify the PCR product spanning the CMAH-deletion region. (c) Comparison of the CMAH region in cat and ferret

genomes. Seven-kb PCR product containing the CMAH-deleted region was amplified using primers CMAH_FOR and CMAH_REV, respectively. (*) indicates

the start of the CMAH gene, (**) indicates individual exon(s) on the CMAH gene and (***) indicates the end of the CMAH gene. Images below show CMAH

exon PCR products from exon 3, exon 5, exon 8, exon 11 and exon 12, from cat (C), dog (D), human (H) and ferret (F) genomic DNA.
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suggested to have an influence in IAV host range39. This is
supported by erythrocyte agglutination assays using red blood cells
expressing distinct sialic-acid types40–42, IAV-binding assays with
Neu5Ac or NeuGc receptors43–45, determination of sialic-acid
cleavage rates with Neu5Ac or NeuGc receptors46, amino-acid
modifications of HA47 and NA4. A fundamental difference between
non-Neu5Gc-expressing IAV hosts, such as human and ferret, and
the Neu5Gc-expressing IAV reservoirs, such as pig and duck, is that
the latter two species express both Neu5Gc- and Neu5Ac-terminated
receptors. Selective pressure for adaptation in humans is therefore
restricted to Neu5Ac receptor, however, in pigs and ducks IAV can
adapt to either Neu5Ac and Neu5Gc receptors.

To determine receptor-binding preference of human-adapted
whole IAV and to resolve the relative roles of sialic-acid linkage
type and sialic-acid species, we have conducted a series of
saturation transfer difference (STD) nuclear magnetic resonance
(NMR) experiments48. STD NMR is a versatile technique to
investigate protein–ligand binding by saturating the protein
resonances without effecting ligand signals. In the study
presented here, STD NMR experiments were performed with
intact influenza virus particles of two recently isolated human
viruses (A/Perth/16/2009 H3N2 and A/California/04/2009
pH1N1), complexed with a mixture of 60-sialyllactose (60SL)
synthetic ligands terminating in Neu5Ac (60SLAc) and Neu5Gc
(60SLGc) (Fig. 3a,b). We and others have previously reported
about using STD NMR to investigate ligand binding to intact
virions49–51 and virus-like particles52–54. The results presented in
this study are the first using whole intact influenza virus particles.
In the current study, the interaction between HA displayed on
whole IAV particles and sialyllactose ligands were analysed in the
presence of a low concentration of oseltamivir carboxylate (OC;
50mM) to completely block the NA active site to prevent
sialyllactose ligand binding to the NA and consequently sialic-
acid cleavage55 (Fig. 3b, Supplementary Fig. 4).

Figure 3b shows 1H NMR and STD NMR spectra of an
equimolar mixture of 60SLAc and 60SLGc in complex with whole
IAV. Strong STD NMR signals for the 60SLAc-specific protons are
observed, especially for the methyl protons of the N-acetamido
group, for both H3 and 09H1 viruses. In contrast, 60SLGc shows
only very weak interactions with both viruses under identical
experimental conditions. For both virus strains (pH1N1 virus (A/
California/04/2009, left panel) and H3N2 virus (A/Perth/16/2009,
right panel)) strong STD NMR signals are observed for the
protons of the N-acetamido group (NHAc) (60SLAc), while the
STD NMR signal intensities of the methylene protons (NGGc,
60SLGc) were generally very weak. Similarly, the STD NMR signal
intensities of the H3eq and H3ax protons are stronger for 60SLAc

compared with 60SLGc (magnified at the top). The results clearly
demonstrate that pH1N1 and H3N2 IAVs show a strong
preference for Neu5Ac-containing sialosides. To confirm that
60SLGc has a very weak affinity to HA, we also conducted STD
NMR experiments of 60SLGc in the absence of 60SLAc under
otherwise identical experimental conditions (Supplementary
Fig. 5). STD NMR control experiments of heat-treated virus
and of OC in the absence of sialosides were performed to affirm
that all observed STD NMR signals describe specific HA binding
(Supplementary Fig. 6). Our NMR data with pure, fully
characterized synthetic receptor structures confirm a profound
preference for 60SL terminating in Neu5Ac for two currently
circulating human strains, consistent with adaptation of human
IAV strains to Neu5Ac-terminated receptors. Data mining of
glycan array results from the Consortium for Functional
Glycomics (CFG) database (http://www.functionalglycomics.org)
also revealed preferential binding by human IAV HA to Neu5Ac
compared with Neu5Gc-terminating structures. Comparison of
the binding of whole human-adapted IAV strains or purified HA

to glycan arrays, displaying sialyllactose or sialyllactosamine
structures, with identical spacer structures, terminating in either
Neu5Ac or Neu5Gc also indicate a strong preference for Neu5Ac-
terminating structures (Supplementary Figs 7 and 8).

The cleavage of four distinct sialyllactose substrates by whole
influenza virus-associated NA was followed by a time-cause 1H
NMR study. Figure 3c shows substrate conversion of 30SLAc,
30SLGc, 60SLAc and 60SLGc using identical virus preparations as
used in the STD NMR experiments (Supplementary Fig. 9). Both
viruses cleave a2,3-sialosides more efficiently than a2,6-sialosides.
In case of the pH1N1 virus, the N-glycolyl substrates get
converted slightly faster than the N-acetyl counterparts of the
same linkage. On the contrary, N-acetyl-containing substrates are
significant better substrates for the NA of the H3N2 virus
compared with the N-glycolyl-containing substrates. Both linkage
type and sialic-acid species contribute significantly towards NA
specificity. For the H3N2 strain, the Neu5Ac-containing 30SLAc

and 60SLAc are preferred over the equivalent substrate with
Neu5Gc regardless of the linkage.

Discussion
Our study reveals that ferrets are a naturally humanized model
system with respect to IAV receptor biology. Previous studies have
shown that ferrets have similar IAV receptors with respect to the
SAa2,6-linkage56 and anatomical distribution11. Here we show
that ferrets, like humans, exclusively express Neu5Ac on these
receptors. Our STD NMR analysis of whole human IAV with fully
characterized IAV receptor structures, and NA activity assays,
confirm the importance of Neu5Ac in both HA and NA functions.
Sub-optimal interactions of human-adapted IAV with Neu5Gc-
terminated viral receptors, may explain why other dominant
rodent animal models (mouse, rabbit, rat and guinea pig) are not
optimal for studies with human-adapted IAV strains. We conclude
that exclusive expression of Neu5Ac in ferrets is a contributing
factor to their unique suitability as a model for human-adapted
IAV. Recently, a CMAH mutation has been reported in new world
monkeys, and this mutation differentiates them from old world
monkey species, which express Neu5Gc30. This new finding
supports the importance of exclusive expression of Neu5Ac-
terminated receptors in human-adapted IAV model systems, as
marmosets, a new world monkey species, have previously been
shown to be suitable to study human-adapted IAV, including
transmission studies, whereas, macaques, an old world monkey
species, cannot transmit human-adapted IAV57. The implications
of our discovery of the exclusive expression of Neu5Ac in ferrets
extend beyond the IAV field. Ferrets may serve as a natural model
system for other human pathogens that utilize sialic-acid receptors
such as rotavirus58,59, and for studies on the emerging role of the
Neu5Gc xeno-auto-antigen60 in inflammatory61, autoimmune62,63

and neoplastic human disease64.

Methods
Western blot analysis of sialic-acid expression in serum. Serum samples were
purchased from commercial suppliers: ferret (Jomar Bioscience), human (H4522,
Sigma), bovine (B8655, Sigma) and mouse (M5905, Sigma). Serum samples were
diluted 1:10 in a 50-ml volume of 1� NA buffer (N3786, Sigma), ±1 milliunit
(mIU) NA (N3786, Sigma) and incubated at 37 �C for 3 h before SDS-poly-
acrylamide gel electrophoresis of 10 mg of each sample (NuPage 4–12% Bis-Tris gel,
Invitrogen). For detection of Neu5Gc, primary antibody (1/2,000 dilution)
and blocking solution (0.5% v/v in PBS) used was supplied by Sialix (formerly
GC-Free Inc., San Diego, CA, USA). Secondary antibody used was anti-chicken IgY
(IgG) alkaline phosphatase conjugate produced in rabbit (A9171, Sigma) at
1/10,000 dilution. For detection of sialic acid (Neu5Ac and Neu5Gc), lectin
SNA-alkaline phosphatase conjugate (LA-6802-1, EY Laboratories) was used at
1/1,000 dilution in 1% bovine serum albumin (w/v) in PBS. All membranes were
washed in 1� tris-buffered saline, 0.05% Tween 20. Detection of bands with anti-
Neu5Gc-specific sera or SNA that were present in NA (� ) sample and absent in
the NA (þ ) are interpreted as binding to serum proteins, with glycosylations
terminated with sialic acid.
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Figure 3 | Molecular analysis demonstrating the importance of sialic-acid (SA) type on HA and NA specificity. (a) Chemical structures of SAa2,3Gal

and SAa2,6Gal in which SA is either Neu5Ac (30SLAc, 60SLAc) or Neu5Gc (30SLGc, 60SLGc). (b) Haemagglutinin receptor specificity of human influenza A

viruses pH1N1 and H3N2. 1H NMR (bottom row) and STD NMR (above) spectra were obtained of an equimolar mixture of 2 mM 60SLAc

(Neu5Aca2,6Galb1,4Glc) and 60SLGc (Neu5Gca2,6Galb1,4Glc) with pH1N1 virus (A/California/04/2009, left panel) and H3N2 virus (A/Perth/16/2009,

right panel), respectively. All NMR samples also contained a low concentration of oseltamivir carboxylate (50mM, OC), a very potent nanomolar inhibitor

of the viral neuraminidase to inhibit sialic-acid cleavage (Supplementary Fig. 4). Shown are only the axial and equatorial H3 protons (H3ax, H3eq) and the

N-acetamido methyl (NHAc) and methylene (NHGc) protons of the sialic-acid moiety that are clearly distinguishable between 60SLAc and 60SLGc. The

entire spectra are shown in Supplementary Fig. 5. (c) Neuraminidase substrate specificity of human influenza A viruses pH1N1 and H3N2. 1H NMR

spectroscopy was employed to follow the cleavage of sialosides (60SLAc; 60SLGc; 30SLAc; 30SLGc.) upon addition of pH1N1 virus (A/California/04/2009,

left panel) and H3N2 virus (A/Perth/16/2009, right panel), respectively. The conversion rate was calculated using the absolute peak intensity of

the sialyllactose H3eq-signals (±7.5% error) based on substrate depletion by a successive series of 1H NMR spectra over 20 min at 37 �C

(Supplementary Fig. 9).
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Sugar analysis of serum for the detection of sialic acids. A 20-ml subsample of
the stock samples was subjected to mild acidic conditions using 0.1 M tri-
fluoroacetic acid. At the end of the reaction, the sample volume was reduced to
dryness under vacuum and the residue was reconstituted in MilliQ water (100 ml).
The analysis was carried out using a high-performance anion-exchange chroma-
tograph with pulsed amperometric detection (HPAEC-PAD) fitted with a PA1
guard column (4� 50 mm) connected to a CarboPac PA1 column (4� 250 mm)
held at 30 �C (ref. 65). The sample (10 ml) was injected into the HPAEC-PAD and
analysed using a basic solvent (NaOH), at a flow rate of 1 ml min� 1. The analytes
detected were quantified using external calibration66. Samples were analysed in
triplicate and the data averaged.

Immunofluorescence labelling and microscopy. To generate cryopreserved tissue
sections, organs including brain, lung, kidneys, liver and spleen were removed from a
healthy mouse (balb/c male; 6 weeks old) or ferret (male; 2 years old) deeply
anaesthetized by inhalation of Halothane (NRA Approval No, 40398/0198, Veter-
inary Companies of Australia PTY LTD). Experiments were approved by the Animal
Ethics Committees of the University of Adelaide and the Institute of Medical and
Veterinary Science, Adelaide, SA, Australia. The freshly removed organs were
embedded in OCT Tissue-Tek (Sakura, USA), snap frozen in isopentane (APS
Finechem, Australia) cooled by dry ice. Serial 7-mm sections were cut in an electronic
cryotome (Thermo Electron Corporation, UK/USA). Mouse blood smears were
made from fresh mouse blood. Both tissue sections and mouse blood smears were air
dried, and stored in the airtight containers at � 20�C before staining.

Cryopreserved sections or blood smears were fixed in 4% paraformaldehyde
(Sigma, P6148) and permeabilized by 0.1% Triton X-100. The sections and blood
smears were then incubated with 1 mg ml� 1 SubAB (or PBS as a control) followed
by BA nonspecific blinding blocking agent (GC-free Inc), primary antibodies
(chicken anti-Neu5Gc or control serum, and rabbit anti-SubA) and secondary
antibodies (goat anti-chicken-alexa 488 and goat anti-rabbit-alexa 594). All the
incubations were carried out in a humidified atmosphere in the dark at room
temperature. The tissue sections and blood smears were then examined with
fluorescence microscope (Olympus AX 70 or Olympus IX-70) and the digital
images were taken using the Precision Digital Imaging System (Vþ þ , Digital
Optics Limited, Auckland, New Zealand) or Metamorph software program
(version 6.3r7; Molecular Devices).

Isolation of ferret CMAH region BAC clones. Comparison of regions shown in
Fig. 2a was performed using genome sequences for mouse (accession code
NC_000079.6), human (NC_000006.12) and cat (NC_018727.1), respectively.
Outer probes indicated on Fig. 1b (sequences numbered as in GenBank accession
codes KJ027518 and KJ027519) were designed in conserved regions flanking
CMAH that were 100% homologous to other vertebrate species. These regions were
amplified with primers (Supplementary Table 1) using ferret DNA (Zyagen GF-
180, CA) as template using Go-Taq polymerase (Promega, M8291). PCR product
was purified (Qiagen PCR Purification Kit, 28106) and sequenced using BigDye
v3.1 (AB Biosystems). To label the probes, digoxigenin (DIG)-labelled versions of
the respective forward primer (FOR) used in conjunction with a non-labelled
reverse (REV) primer for each probe were used to amplify the DIG-labelled PCR
product that was used as a probe for screening of a ferret BAC library (CHORI 237
BAC) ordered from the Children’s Hospital Oakland Research Institute (CHORI).
PCR product was pooled, purified and quantitated prior to being used as a probe.
The ferret BAC library was screened using 3 mg of DNA probe. Membrane pre-
hybridization and hybridization steps were done according to Sambrook (Cold
Spring Harbour, USA)67. Development of membrane was done using the Roche
DIG Kit as per the manufacturer’s instructions (Cat no. 11745832910).

BAC DNA was extracted from positive clones using DNA PhasePrep BAC
DNA Kit (Sigma, NA 0100). The BAC library was made in vector pBACGK1.1 and
end sequenced with T7 and SP6 universal primers and Sanger sequencing using
BigDye v3.1 (Applied Biosystems, 4336917). Selected clones were also sequenced by
IonTorrent. One mg BAC DNA was fragmented to B200–300 bp using a Covaris
S2 ultrasonicator. Fragment libraries suitable for sequencing on the IonTorrent
PGM were generated using the IonXpress Fragment library kit as per the
manufacturer’s instructions (Life Technologies, Beverley, USA), and a single
314-chip of sequencing data generated for each BAC. Raw sequencing reads were
trimmed for quality, reads mapping to either E. coli Dh10B or the BACX backbone
were removed and a de novo assembly was generated using the CLC genomics
workbench (CLC bio, Denmark). De novo contigs were mapped and visualized
against the domestic cat (Felis catus) genome using BLAT and the UCSC genome
browser (http://genome.ucsc.edu/cgi-bin/hgGateway?org=Cat&db=felCat4). The
contigs were used to aid in the design of further probes for rescreening of the BAC
library to isolate clones encompassing CMAH and flanking regions (clones RE14
and 182P23; sequences included in GenBank accession code KJ027519). Final,
contiguous, complete sequences of selected BAC clones covering the CMAH were
achieved using SMRT sequencing. Briefly, BAC clone DNA was sent to the Yale
Center for Genome Analysis. SMRTbell libraries were prepared as previously
described according to the manufacturer’s instructions (PacBio, CA, USA).
Sequencing was carried out on the PacBio RS II (PacBio) using standard protocols
for long-insert libraries and de novo assembled using hierarchical genome assembly
process software (PacBio).

PCR analysis of the CMAH-deletion region in mammalian species. PCR pri-
mers CMAH_FOR and CMAH_REV were designed to span the entire deleted
region of ferret CMAH (see accession code JX036482 for primer sequences). These
primers amplify a 7-kb PCR product from ferret genomic DNA (Zyagen). Primer
walking and Sanger sequencing using BigDye v3.1 and BigDye v1.1 and deaza
dGTP (Applied Biosystems) were used in combination to determine the sequence
of this repeat-rich 7-kb region of the ferret genome (the sequence has been
deposited in the GenBank database with accession code JX036482). The same
sequencing process was used to sequence the fragment from a second, independent
ferret sample. DNA from this second ferret sample was extracted (DNeasy Blood
and Tissue Kit, Qiagen) from ferret kidney tissue provided by the Institute of
Medical and Veterinary Science. Animal tissue for various members of the Mus-
telidae family (Supplementary Table 3) was obtained from the Burke Museum of
Natural History and Culture, University of Washington. Genomic DNA from the
tissues were isolated as per the manufacturer’s instructions (DNeasy Blood and
Tissue Kit, Qiagen). DNA obtained was quantified using a nanodrop (NANO-
DROP 2000, Thermo Scientific), and 10 ng of DNA was used in PCR reactions.
CMAH exon PCR products were amplified using Go-Taq polymerase, purified
(Qiagen PCR Purification Kit, 28106) and sequenced for verification as before.
DNA samples were run on a 3% agarose gel stained with 5% (v/v) ethidium
bromide (Sigma).

CMAH exon primers were designed for the most highly conserved exons in the
CMAH gene (Supplementary Table 2). Such regions were determined through the
alignment of the coding domain sequence of the CMAH messenger RNA for
several eukaryotes such as: cat (accession codes EF127684.1 and NM_001244985.1),
human (FJ794466.1), mouse (NM_007717.5, NM_001111110.2, NM_001284519.1,
NM_001284520.1), rat (NM_001024273.1), maccaca monkey (NM_001032856.1),
chimpanzee (NM_001009041.1) and wild pig (NM_001113015.1). Messenger RNA
sequences were aligned using the ClustalW alignment tool in MacVector (ver. 11.0.2,
MacVector Inc.). Highly conserved regions were identified in exon 3, exon 5, exon 8,
exon 11 and exon 12 of the CMAH gene. Primers were designed to be at least 18
nucleotides long, with a minimum annealing temperature of 50 �C, and allowed to
contain only a single-nucleotide change per organism. All primers were ordered and
made by Sigma (see Supplementary Table 2 for primer sequences). PCR products
generated were sequenced to confirm the intended exons were amplified from each
animal sample. Genomic DNA of cat (GC-130F), dog (GD-150F) and human (GH-
180F) used as PCR controls were purchased from Zyagen.

Propagation and purification of IAV. Adherent Madin Darby canine kidney
(MDCK) cells were obtained from the WHO Collaborating Centre for Reference
and Research on Influenza (VIDRL, Melbourne). Cells were grown in Eagle’s
minimum essential medium supplemented with 1% penicillin/streptomycin, 1%
GlutaMAX and 10% fetal calf serum at 37 �C. Human influenza strains A/Perth/16/
2009 (H3N2) and A/California/04/2009 (pH1N1), also obtained from the VIDRL,
were passed in MDCK cells in Eagle’s minimum essential medium (1% GlutaMAX)
containing low levels of TPCK (N-tosyl-L-phenylalanyl chloromethyl ketone)
treated trypsin (1 mg ml� 1) to facilitate infection of cells. The viral supernatant was
harvested after 48 h and concentrated by polyethylene glycol precipation overnight
at 4 �C. Standard sucrose density centrifugation was implemented to purify the
resuspended polyethylene glycol-precipitated virus according to routine proce-
dures68. The purified virus was inactivated by 20-min exposure to ultraviolet light
and subsequently buffer exchanged to 20 mM deuterated phosphate buffer pH 7.1
and 70 mM NaCl.

MUN NA inhibition assay. Inhibition of IAV NA was quantitatively assessed
using the fluorescent substrate 4-methylumbelliferyl N-acetyl-a-D-neuraminic acid
(MUN, Sigma-Aldrich)69–71. The 10-ml reaction mixture containing 0.1 mM MUN,
1 mM OC and 1 ml of the purified ultraviolet-inactivated virus in reaction buffer
(50 mM sodium acetate, 6 mM CaCl2, pH 5.5) was prepared in a black 96-well plate
on ice. Different dilutions of virus in triplicate were analysed to identify the highest
virus concentration, which is still completely inhibited by 1 mM OC. The reaction
was incubated at 37 �C with 900 r.p.m. shaking for 20 min and then stopped by
adding 0.25 M glycine pH 10.

1H NMR-based NA activity assay. All enzyme reactions were performed at 310 K
in 20 mM sodium acetate buffer containing 6 mM CaCl2, pH 5.5, the optimal pH
for NA activity. In a standard 1H NMR experiment, a spectrum of each individual
reaction mixture containing 1 mM of one of the four sialyllactose substrates
(30SLAc, 30SLGc, 60SLAc and 60SLGc) was acquired at t¼ 0 min. After addition of
purified ultraviolet-inactivated virus (A/California/04/2009 pH1N1, A/Perth/16/
2009 H3N2) 1H NMR spectra were recorded every 30 s over a total time of 20 min
with 8 numbers of scans. Substrate conversions could be calculated based on the
decrease of the absolute peak intensities of the sialyllactose H3eq-signals. Field
variations, differences in baseline correction and background noise have been taken
into consideration by applying an error of ±7.5% to the obtained rates.

Similarly, the NA activity of pH1N1 and H3N2 purified virus samples was
measured with a substrate mixture of 1 mM 30SLAc, 30SLGc, 60SLAc and 60SLGc in
the absence and presence of 50 mM OC at 310 K. The virus concentration was
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identical as in STD NMR experiments to ensure a complete blocking of the NA’s
active site under STD NMR conditions.

STD NMR experiments. All STD NMR spectra were acquired in Shigemi Tubes
(Shigemi) with a Bruker 600 MHz Avance spectrometer at 283 K using 1H/13C/15N
gradient cryoprobe equipped with z-gradients and a STD NMR set-up similar to
previous experiments using whole-rotavirus particles48,49. The virus was saturated
on resonance at � 1.0 p.p.m. and off-resonance at 300 p.p.m. with a cascade of 60
selective Gaussian-shaped pulses of 50-ms duration. A 100-ms delay between each
pulse was applied, resulting in a total saturation time of 3 s. A relaxation delay of 4 s
was used. A total of 1,024 scans per STD NMR experiment were acquired and a
WATERGATE sequence was used to suppress the residual HDO signal. Spin-lock
filtre with 5-kHz strength and duration of 10 ms was applied to suppress protein
background. Substrate concentrations of 2 mM for 30SLAc, 30SLGc, 60SLAc and
60SLGc were used in all STD NMR set-ups in the presence of 50 mM OC. OC was
preincubated with the virus for 10 min at room temperature before adding the
various substrates. Control STD NMR experiments were performed with an
identical experimental set-up of virus with 50 mM OC, but in the absence of the
sialyllactose ligands, to exclude any potential STD NMR signals derived from OC
binding to NA. For a second control experiment the virus sample was incubated at
70 �C for 20 min prior to the STD NMR experiment to identify any unspecific
binding of the sialyllactose substrates to the virus particle.

Data mining of publically available glycan array experiments using IAV.
Immunofluorescence values were extracted from CFG array experiments (http://
www.functionalglycomics.org/, accessed 15 October 2012) in which common sia-
lyllactose or sialyllactosamine structures and common linkages were present that
were terminated with either Neu5Ac or Neu5Gc. These structures include 30SL
(Siaa2-3Galb1-4Glcb-Sp0), 30SLN (Siaa2-3Galb1-4GlcNAcb-Sp0) and 60SLN
(Siaa2-6Galb1-4GlcNAcb-Sp0), where Sia can be either Neu5Ac or Neu5Gc. Data
compared are from whole virus and HA. No data were available for NA.
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