7,359 research outputs found

    Inside Money and Monetary Neutrality

    Get PDF
    This paper examines the interaction between the financial and real sectors of the economy within the framework of a stochastic, rational expectation model that distinguishes between inside and outside money. The model also can be used to study the impact of variations in the degree of intermediation, measured by the elasticity of bank deposit supply. In contrast to earlier work which emphasized confusion between monetary and real shocks, we focus on the role played by confusion between inside and outside money and temporary and permanent base money disturbances. Financial sector disturbances, as well as temporary shocks tothe monetary base, are shown to have real effects even when private agents have complete information. When contemporaneous information on economic disturbances is incomplete, permanent shocks to the monetary base also have real effects. If our model is correct, it is invalid to reject equilibrium models of the business cycle on the grounds that anticipated money affects output. We argue that this result is robust in the sense that many "reasonable" models which incorporate inside money would yield a non-neutrality of portfolio and temporary base money supply shocks.

    Financial intermediation, monetary policy, and equilibrium business cycles

    Get PDF
    Business cycles ; Monetary theory ; Financial institutions

    Clinical and magnetic resonance imaging features of idiopathic oculomotor neuropathy in 14 dogs: Canine Idiopathic Oculomotor Neuropathy

    Get PDF
    Ophthalmoplegia/ophthalmoparesis (internal, external, or both) has been reported in dogs secondary to neoplasia affecting the oculomotor nerve and is usually given a poor prognosis. The purpose of this retrospective study was to describe the clinical findings, magnetic resonance imaging (MRI) findings, management, outcome, and follow-up in a group of canine cases with idiopathic oculomotor neuropathy. Inclusion criteria included cases with ophthalmoplegia/ophthalmoparesis (internal, external or both) as sole neuroophthalmologic signs, complete ophthalmic and neurologic examination, head MRI, and a minimum follow-up period of 1 year. Dogs with progressive neurological signs not related to oculomotor neuropathy were excluded. Fourteen cases met the inclusion criteria. All cases were unilaterally affected. Magnetic resonance imaging showed equivocal enlargement of the oculomotor nerve in three cases, mild enlargement in five, and marked enlargement in six. Contrast enhancement was present in 12 cases, being marked in six. When present, the contrast enhancement was focal in eight cases and diffuse in four. The median follow-up time was 25 months. External ophthalmoparesis improved in seven cases, five cases under no treatment and two under systemic corticosteroid therapy. The clinical signs in the other seven cases remained unchanged. Idiopathic oculomotor neuropathy should be included as a differential diagnosis in dogs presenting with unilateral ophthalmoplegia/ophthalmoparesis (internal, external, or both) with the absence of other neurologic and ophthalmic signs, and with the MRI findings restricted to the oculomotor nerve. Idiopathic oculomotor neuropathy has a good prognosis as the clinical signs do not deteriorate and they can improve without treatment

    Program for transfer research and impact studies

    Get PDF
    Research activities conducted under the program for Transfer Research and impact studies are reviewed. Programs include: Tech Brief - Technical Support Package (TSP) Program; transfer documentation; and technology transfer profiles. An analysis of user behavior patterns is made by studying questionnaires filled out by users of the Tech Brief - TSP program. The process of technology transfer is discussed in terms of improving its effectiveness

    Optimized temporal binning of comparison star measurements for differential photometry

    Get PDF
    Ground-based, high precision observations of the light curves of objects such as transiting exoplanets rely on the application of differential photometry. The flux of the target object is measured relative to a comparison star in the same field, allowing correction for systematic trends in the light curve, mainly due to atmospheric effects including the variation of extinction with airmass. However, the precision of the light curve is then limited by the random noise for the measurements of both the target object and the comparison star. For time-resolved photometry using short exposure times of up to a few tens of seconds, the time-scale of the systematic variations due to atmospheric (or other) effects can be much longer than the cadence of the observations. In this case, the overall signal-to-noise ratio of the observation may be improved significantly by applying some temporal binning to the measurements of the comparison star, before comparison with the target object, without reducing the cadence of the overall light curve. In this paper, we will describe a data reduction pipeline for implementing this method which optimizes the number of frames to be binned for the comparison star, and we present example results for time-resolved photometric data. An example of applying the technique on an exoplanet transit light curve of WASP-166b is presented using four comparison stars of different magnitudes

    Program for transfer research and impact studies

    Get PDF
    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication

    Certification of a class of industrial predictive controllers without terminal conditions

    Get PDF
    Three decades have passed encompassing a flurry of research and commercial activities in model predictive control (MPC). However, the massive strides made by the academic community in guaranteeing stability through a state- space framework have not always been directly applicable in an industrial setting. This paper is concerned with a priori and/or a posteriori certification of persistent feasibility, boundedness of industrial MPC controllers (i) based on input-output formu- lation (ii) using shorter control than prediction horizon (iii) and without terminal conditions.This work has been supported by FDOC, UGent

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi
    • …
    corecore