# RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE

This author's accepted manuscript may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

The full details of the published version of the article are as follows:

TITLE: CLINICAL AND MAGNETIC RESONANCE IMAGING FEATURES OF IDIOPATHIC OCULOMOTOR NEUROPATHY IN 14 DOGS

AUTHORS: Roser Tetas Pont, Courtenay Freeman, Ruth Dennis, Claudia Hartley, Elsa Beltran

JOURNAL: VETERINARY RADIOLOGY & ULTRASOUND

PUBLISHER: Wiley

PUBLICATION DATE: May/June 2017

DOI: 10.1111/vru.12478



| 1  | Title                                                                              |
|----|------------------------------------------------------------------------------------|
| 2  | CLINICAL AND MAGNETIC RESONANCE IMAGING FEATURES OF                                |
| 3  | IDIOPATHIC OCULOMOTOR NEUROPATHY IN 14 DOGS                                        |
| 4  | Authors                                                                            |
| 5  | Roser Tetas Pont. Comparative Ophthalmology Unit, Animal Health Trust, Lanwades    |
| 6  | Park, Kentford CB8 7UU United Kingdom. Current address: Queen Mother Hospital for  |
| 7  | Animals. Royal Veterinary College. Hawkshead Lane, North Mymms, Hertfordshire AL9  |
| 8  | 7TA United Kingdom. <u>rtetas@rvc.ac.uk</u>                                        |
| 9  |                                                                                    |
| 10 | Courtenay Freeman. Neurology/Neurosurgery Unit, Animal Health Trust, Lanwades      |
| 11 | Park, Kentford CB8 7UU United Kingdom. Current address: Veterinary Specialty Care, |
| 12 | 985 Johnnie Dodds Blvd, Mount Pleasant, SC 29464.                                  |
| 13 | cfreeman@veterinaryspecialtycare.com                                               |
| 14 |                                                                                    |
| 15 | Ruth Dennis. Diagnostic Imaging Unit, Animal Health Trust, Lanwades Park, Kentford |
| 16 | CB8 7UU United Kingdom. ruth.dennis@aht.org.uk                                     |
| 17 |                                                                                    |
| 18 | Claudia Hartley. Comparative Ophthalmology Unit, Animal Health Trust, Lanwades     |
| 19 | Park, Kentford CB8 7UU United Kingdom. Current address: Davies Veterinary          |
| 20 | Specialists, Manor Farm Business Park, Higham Gobion, Herts SG5 3HR United         |
| 21 | Kingdom. <u>chartley@vetspecialists.co.uk</u>                                      |
| 22 |                                                                                    |

| 23 | Elsa Beltran. Neurology/Neurosurgery Unit, Animal Health Trust, Lanwades Park,    |
|----|-----------------------------------------------------------------------------------|
| 24 | Kentford CB8 7UU United Kingdom. Current address: Queen Mother Hospital for       |
| 25 | Animals. Royal Veterinary College. Hawkshead Lane, North Mymms, Hertfordshire AL9 |
| 26 | 7TA United Kingdom. <u>ebeltran@rvc.ac.uk</u>                                     |
| 27 |                                                                                   |
| 28 | Corresponding address                                                             |
| 29 | Roser Tetas Pont                                                                  |
| 30 | rtetas@rvc.ac.uk                                                                  |
| 31 |                                                                                   |
| 32 | Key Words                                                                         |
| 33 | canine, ophthalmoplegia, oculomotor nerve, MRI, CNIII                             |
| 34 |                                                                                   |
| 35 | Running head                                                                      |
| 36 | Canine idiopathic oculomotor neuropathy                                           |
| 37 |                                                                                   |
| 38 |                                                                                   |
| 39 |                                                                                   |
| 40 |                                                                                   |
| 41 |                                                                                   |
| 42 |                                                                                   |
| 43 |                                                                                   |
| 44 |                                                                                   |
| 45 |                                                                                   |
|    |                                                                                   |

46 Abstract

47 Ophthalmoplegia/ophthalmoparesis (internal, external, or both) has been reported in dogs 48 secondary to neoplasia affecting the oculomotor nerve and is usually given a poor 49 prognosis. The purpose of this retrospective study was to describe the clinical findings. 50 magnetic resonance imaging (MRI), management, outcome and follow-up of canine cases 51 with idiopathic oculomotor neuropathy. Inclusion criteria included cases with 52 ophthalmoplegia/ophthalmoparesis (internal, external or both) as sole neuro-53 ophthalmologic sign, complete ophthalmic and neurologic examination, head MRI, and a 54 minimum follow-up of one year. Dogs with progressive neurological signs not related 55 with oculomotor neuropathy were excluded. Fourteen cases met the inclusion criteria. All 56 cases were unilaterally affected. Magnetic resonance imaging showed equivocal 57 enlargement of the oculomotor nerve in three cases, mild enlargement in five and marked 58 enlargement in six. Contrast enhancement was present in twelve cases, being marked in 59 six. When present, the contrast enhancement was focal in eight cases and diffuse in four. 60 The median follow-up time was 25 months. External ophthalmoparesis improved in 61 seven cases, five cases under no treatment and two under systemic corticosteroid therapy. 62 The clinical signs in the other seven cases remained unchanged. Idiopathic oculomotor 63 neuropathy should be included as a differential diagnosis in dogs presenting with 64 unilateral ophthalmoplegia/ophthalmoparesis (internal, external, or both) with the 65 absence of other neurologic and ophthalmic signs, and with the MRI findings restricted to 66 the oculomotor nerve. Idiopathic oculomotor neuropathy has a good prognosis as the 67 clinical signs do not deteriorate and they can improve without treatment.

#### 69 Introduction

70 The oculomotor nerve (cranial nerve III or CN III) innervates the ipsilateral extraocular 71 muscles (dorsal, ventral, and medial rectus and ventral oblique muscle) and the ipsilateral levator palpebrae superioris muscle.<sup>1</sup> Additionally, CN III controls ipsilateral pupillary 72 constriction through its parasympathetic component.<sup>1</sup> A complete CN III lesion (motor 73 74 and parasympathetic dysfunction) causes areflexive mydriasis (internal ophthalmoplegia). 75 a smaller palpebral fissure due to ptosis, neuromuscular dorsolateral strabismus, and the 76 affected eve will not adduct well on testing physiological nystagmus (vestibulo-ocular reflex) (external ophthalmoparesis).<sup>2</sup> In the veterinary literature, canine 77 78 ophthalmoplegia/ophthalmoparesis (internal, external, or both) has been reported 79 secondary to neoplasia affecting CN III at the level of the middle cranial fossa (MCF) or orbital fissure.<sup>3-12</sup> and it is usually given a poor prognosis.<sup>2</sup> Idiopathic trigeminal and 80 facial neuropathy have been reported in dogs;<sup>13-17</sup> however, idiopathic oculomotor 81 82 neuropathy is currently not reported in the veterinary literature. The aims of this study 83 were to describe the clinical findings, magnetic resonance imaging (MRI) features, 84 management, outcome, and long-term follow-up of canine cases diagnosed with 85 idiopathic oculomotor neuropathy.

86

#### 87 Methods

88 Medical records of all dogs referred to the Animal Health Trust for

89 ophthalmoplegia/ophthalmoparesis from January 1999 to December 2014 were reviewed.

90 Inclusion criteria included all cases with ophthalmoplegia/ophthalmoparesis (internal,

91 external or both) as sole neuro-ophthalmologic sign, complete ophthalmic and neurologic

| 92  | examination, head MRI, and a minimum follow-up of one year. Dogs with progressive         |
|-----|-------------------------------------------------------------------------------------------|
| 93  | neurological signs not related to oculomotor neuropathy were excluded.                    |
| 94  | Patient information collected included the following: age, gender, breed, duration of     |
| 95  | clinical signs prior to referral, clinical signs and affected side at presentation, MRI   |
| 96  | findings, cerebrospinal fluid (CSF) analysis, treatment, and follow-up. All MRI studies   |
| 97  | were reviewed by a board-certified veterinary neurologist (E.B.) and a board-certified    |
| 98  | veterinary radiologist (R.D.), who were unaware of the side of the clinical signs.        |
| 99  | Disagreement was resolved by a consensus reading by the two reviewers. Five MRI           |
| 100 | parameters were evaluated in each case and included the following: (1) enlargement of     |
| 101 | CN III (equivocal, mild or marked), (2) intensity at the area of CN III on T2W and T1W    |
| 102 | and also on FLAIR when available (hypointense, isointense or hyperintense), (3) post-     |
| 103 | contrast enhancement at the area of CN III (none, mild or marked), (4) features of post-  |
| 104 | contrast enhancement at the area of CN III (focal or diffuse enhancement and              |
| 105 | homogenous or heterogeneous enhancement), and (5) anatomical region of the lesion.        |
| 106 | The enlargement was classified as equivocal when there was uncertainty about the          |
| 107 | presence or absence of enlargement, mild when the affected CN III was enlarged            |
| 108 | compared to the contralateral but there was no mass effect to the surrounding neuropil,   |
| 109 | and marked when the affected CN III was enlarged and there was mass effect to the         |
| 110 | surrounding neuropil. The intensity of CN III on T2W was classified as hypointense        |
| 111 | when its brightness was inferior to the brightness of normal gray matter, isointense when |
| 112 | its brightness was equal to the normal gray matter, and hyperintense when its brightness  |
| 113 | was superior to the brightness of normal gray matter. This was repeated for T1W and also  |
| 114 | for FLAIR when available. The post-contrast enhancement was categorized as mild when      |

| 115 | there was contrast enhancement that was hypointense compared to the fat tissue on T1W       |
|-----|---------------------------------------------------------------------------------------------|
| 116 | images, and marked when the contrast enhancement was isointense to the fat tissue on        |
| 117 | T1W images. The contrast enhancement was classified as diffuse when detected                |
| 118 | throughout the length of CN III and focal when only present at a focal location of CN III.  |
| 119 | And finally, the contrast enhancement was categorized as homogenous when there was          |
| 120 | uniform enhancement and heterogeneous when it was dissimilar throughout the enhanced        |
| 121 | area. If follow-up MRI was available, the images were evaluated following the same          |
| 122 | parameters.                                                                                 |
| 123 | For each patient, long term follow-up was performed with a combination of clinical re-      |
| 124 | examinations, evaluation of the clinical records post-diagnosis and phone conversation      |
| 125 | with the owner. The referring veterinarians were contacted for the clinical history post-   |
| 126 | diagnosis of the patients. The owners whose dogs were alive at the start of the study were  |
| 127 | invited for a re-examination at the Animal Health Trust. Cases re-examined received a       |
| 128 | complete ophthalmic examination by a European College of Veterinary Ophthalmologists        |
| 129 | trained ophthalmologist (R.T.P.) and neurological examination by board-certified            |
| 130 | veterinary neurologists (C.F. and E.B.). In cases of dogs either lost to follow-up, dead or |
| 131 | not available for re-examination, the long-term follow-up was determined based on the       |
| 132 | clinical records post-diagnosis and the phone conversation with the owner.                  |
| 133 |                                                                                             |

### 134 **Results**

135 Signalment and Clinical Findings

136 Fourteen cases met the inclusion criteria (Appendix 1). The mean (standard deviation,

137 SD) and median (range) age at presentation were 6.25 years (2.3) years and 6.5 years (3

- to 10 years), respectively. There were entire females (n = 1, 7%), neutered females (n = 7,
- 139 50%), entire males (n = 2, 14%), and neutered males (n = 4, 29%). The distribution of the
- 140 individual breeds is shown in Appendix 1, with the more commonly affected breeds
- 141 being Boxer (n = 4, 29%) and Border Collie (n = 2, 14%). The mean (SD) and median
- 142 (range) duration of the clinical signs prior to referral were 73 days (195) and 5 days (1
- 143 day to 2 years), respectively. Cases presented with both internal and external
- 144 ophthalmoplegia/ophthalmoparesis (n = 11, 79%, Fig 1.) or only internal
- 145 ophthalmoplegia (n = 3, 21%). The clinical signs were unilateral in all cases, being right
- 146 sided (n = 8, 57%) or left sided (n = 6, 43%).
- 147
- 148 Magnetic Resonance Imaging Findings
- 149 Magnetic resonance of the head was performed using a 1.5T scanner (GE Signa, GE
- 150 Medical System, Milwaukee, WI, USA). Non-contiguous transverse images with a 3-5-
- 151 mm slice thickness and an interslice gap of 0.3-0.5 mm were generated with T1-weighted
- 152 (T1W) and T2-weighted (T2W) spin echo pulse sequences in all three planes. Sequences
- 153 included T1W and T2W and T1W with fat saturation (FAT-SAT). T1W FAT-SAT
- 154 images were also acquired after intravenous paramagnetic contrast medium,
- 155 0.05mmol/kg, gadobenate dimeglumine (Multi-Hance®, Bracco Imaging SpA, Milan
- 156 Italy). T1W post contrast FAT-SAT and fast fluid-attenuation inversion recovery
- 157 (FLAIR) findings were recorded when available. Magnetic resonance findings are
- detailed in Appendix 2. Equivocal enlargement of CN III was noted in three cases (n = 3,
- 159 21%; Fig. 2), mild enlargement in five cases (n = 5, 35%; Fig. 3) and marked
- 160 enlargement in six cases (n = 6, 43%; Fig. 4). The affected CN III was isointense on T2W

| 161 | and T1W pre-contrast sequences in five cases ( $n = 5, 35\%$ ; Fig. 2), hyperintense on T2W        |
|-----|----------------------------------------------------------------------------------------------------|
| 162 | and isointense on T1W in seven cases ( $n = 7, 50\%$ ; Fig. 3) and hypointense on T2W and          |
| 163 | isointense on T1W in two cases ( $n = 2, 14\%$ ). FLAIR sequence was available in all cases        |
| 164 | but in two dogs; the intensity on FLAIR was equal to T2W in all case but three cases, a            |
| 165 | case with hyperintense CN III on T2W and isointense on FLAIR, and two cases with                   |
| 166 | isointense on T2W and hypointense on FLAIR were noted. Contrast enhancement was                    |
| 167 | present in all but two cases ( $n = 12, 86\%$ ), being marked in six cases ( $n = 6, 43\%$ ). When |
| 168 | present, the contrast enhancement was focal in eight cases ( $n = 8, 67\%$ ) and diffuse in the    |
| 169 | rest (n = 4, 33%). In all cases, the anatomical region of the lesion was at the level of the       |
| 170 | middle cranial fossa; however, in some cases with diffuse enhancement, the lesion                  |
| 171 | extended into the orbital fissure ( $n = 3, 21\%$ ).                                               |
| 172 |                                                                                                    |

#### 173 Other findings

174 Comprehensive haematology and biochemistry were available in 13 cases and were 175 unremarkable in all. Thyroid function was evaluated in three dogs and was determined 176 within normal limits in all cases. One patient (Case 7) had been previously diagnosed 177 with hypothyroidism; however, the dog was receiving thyroid hormone supplementation 178 and the thyroid values were within normal limits at presentation. Thoracic radiographs 179 and abdominal ultrasonography were performed in seven patients and were unremarkable 180 in all. Cerebrospinal fluid was collected from the cerebellomedullary cistern in 13 dogs 181 (Appendix 1). The mean (SD) and median (range) nucleated cell count was 1.99 cells/uL 182 (2.06) and 1 cells/uL (0 to 8 cells/uL), respectively. The nucleated cell count was elevated 183 in two patients (n = 2, 14%), with 6 and 8 cells/uL (reference range 0-5 cells/uL)

| 184 | respectively. The nucleated cellular population consisted in scattered small/medium                     |
|-----|---------------------------------------------------------------------------------------------------------|
| 185 | lymphocytes and monocytes in all cases, apart from Case 14 were the main population of                  |
| 186 | cells were hypersegmented non-degenerated neutrophils. The mean (SD) and median                         |
| 187 | (range) CSF total protein were 0.30 g/L (0.17) and 0.25 g/L (0.19 to 0.80 g/L),                         |
| 188 | respectively. The total protein was elevated in one patient ( $n = 1, 7\%$ ; reference range 0-         |
| 189 | 0.35 g/L; Case 14). Polymerase chain reaction for canine distemper virus, Toxoplasma                    |
| 190 | <i>gondii</i> and <i>Neospora caninum</i> were negative in blood and CSF in all dogs tested ( $n = 9$ , |
| 191 | 64%).                                                                                                   |
| 192 |                                                                                                         |

193 Treatment and Follow-up

194 The treatment and follow-up information is detailed in Appendix 3. Anti-inflammatory to 195 immunosuppressive doses of systemic corticosteroid (prednisolone at 1 mg/kg once to 196 twice daily) was started at presentation in seven dogs (n = 7, 50%). Only two dogs 197 showed improvement of the clinical signs while under systemic corticosteroid treatment 198 (n = 2, 29%; Cases 4 and 14). Case 10 developed severe gastrointestinal side effects 199 within the first week of treatment and the medication was discontinued at that point. The 200 neurological signs in this dog improved three weeks after the systemic corticosteroid 201 treatment was discontinued. Case 9 showed improvement of the clinical signs three 202 months after discontinuation of the systemic corticosteroid treatment. Furthermore, three 203 dogs without systemic corticosteroid treatment (n = 3, 43%; Cases 6, 7 and 12) improved 204 two weeks to four months after their presentation. In the other seven dogs the clinical 205 signs remained unchanged, three received a course of systemic steroid therapy and four 206 had no treatment.

207 Six-month follow-up MRI scan was available in two cases (Cases 8 and 14). In case 8, 208 MRI findings at re-examination remained unchanged compared to presentation and 209 clinical signs were not improved. In case 14, MRI at presentation revealed marked 210 enlargement with marked diffuse post-contrast enhancement; however, at re-examination 211 the follow-up MRI showed equivocal enlargement with no post-contrast enhancement 212 (Fig. 5), and clinical signs were improved at that time. 213 The mean (SD) and median (range) long-term follow-up time was 33.93 months (21.76) 214 and 25 months (12 to 84 months), respectively. The external ophthalmoparesis improved 215 in 64% cases (7/11 dogs) during this period of time and the neuromuscular strabismus 216 resolved. The internal ophthalmoplegia/ophthalmoparesis remained unchanged in 79% 217 cases (11/14 dogs) and partially resolved in 21% cases (3/14 dogs). The mean (SD) and 218 median (range) time to improvement was 5.55 weeks (5.53) and 3.57 weeks (11 days to 4 219 months) respectively, from the day the clinical signs were first noted. Follow-up of over 220 one year with complete ophthalmic and neurological re-examination by the authors was 221 possible in six cases.

222

#### 223 Discussion

224 This is the first descriptive study of idiopathic oculomotor neuropathy in dogs. The

225 presumptive diagnosis of idiopathic neuropathy was made in all cases based on the failure

on revealing an underlying cause. A putative association between cranial neuropathy and

227 hypothyroidism has been stated in the veterinary literature,<sup>18,19</sup> however this is not borne

228 out by other studies.<sup>17,20</sup> None of the dogs of this study showed clinical signs of

229 hypothyroidism and the thyroidal function was normal in the three dogs tested. One case

230 had been previously diagnosed with hypothyroidism; however, the authors think that 231 there is unlikely association between the hypothyroidism and the oculomotor neuropathy 232 due to the fact that at the time of the onset of the clinical signs (oculomotor neuropathy) 233 the dog did not reveal any clinical signs consistent with hypothyroidism and the thyroid function was controlled. Infectious causes of neuropathy are exceptionally rare in dogs.<sup>2</sup> 234 235 and none of the dogs tested in this report for canine distemper virus, Toxoplasma gondii 236 and *Neospora caninum* were positive. In this study, the lack of clinical deterioration in all 237 cases and the clinical improvement in several dogs might indicate the presence of an 238 underlying oculomotor neuritis with subsequent permanent nerve damage. Furthermore, 239 the MRI findings (CN III enlargement with contrast enhancement) and the mildly 240 elevated cell count in CSF (in two dogs) could support this hypothesis. However, this 241 hypothesis could not be confirmed due to the lack of histopathology and for this reason 242 the term idiopathic neuropathy was adopted. Surgical biopsy at this area carries high 243 operative morbidity due to the location and to the authors' knowledge this surgical 244 approach has not been attempted in dogs. 245 All cases in this study presented with mydriasis, and only two dogs retained some 246 pupillary response to light at presentation. On the other hand, external ophthalmoparesis 247 was only seen in some dogs. The oculomotor parasympathetic axons are located superficially on the medial side of CN III,<sup>1</sup> subsequently if the neuropathy initiates in this 248 249 location it is likely that only the parasympathetic component will be affected. The clinical 250 signs were unilateral in all dogs in this study, similar to the reported canine cases of idiopathic facial neuropathy but different to trigeminal neuropathy.<sup>13-17</sup> There are several 251 cases published of unilateral idiopathic trigeminal neuropathy in dogs,<sup>21</sup> however the 252

majority are bilaterally affected.<sup>13</sup> Bilateral trigeminal neuropathy commonly presents 253 with sudden inability to close the mouth:<sup>13</sup> on the other hand, unilateral trigeminal 254 neuropathy may only manifest with unilateral transitory masticatory muscle atrophy.<sup>2</sup> 255 256 Subsequently, it is possible that unilateral cases of trigeminal neuropathy of the 257 mandibular branch are overlooked by owners and veterinarians if the atrophy is mild or 258 transitory. The mean recovery time of motor function was five weeks in the present study, similar to other idiopathic cranial neuropathies;<sup>13,14,16</sup> however, a third of the cases 259 260 affected with CN III motor dysfunction (4/11 dogs) in our study showed no signs of 261 improvement. This finding differs from trigeminal neuropathy where the motor function recovered in all cases,<sup>13</sup> but similar to facial neuropathy, where resolution of clinical 262 signs was only seen in half of the affected dogs.<sup>14,15,16</sup> Some degree of mydriasis persisted 263 264 in all cases in our study; however, almost a quarter of patients recovered partial CN III 265 parasympathetic function. Medical treatment with corticosteroids did not appear to alter 266 the course of the disease in this study, even though the dose used and length of course 267 varied. Further studies are required to prove the efficacy of corticosteroids for the 268 treatment of idiopathic oculomotor neuropathy, however corticosteroid therapy does not appear to change the clinical outcome of other cranial neuropathies.<sup>13,22</sup> 269 270 A total of 22 cases of canine ophthalmoplegia/ophthalmoparesis (internal, external or both) are published in the veterinary literature.<sup>3-12</sup> Of these 22 cases, only three report 271 isolated CN III deficits,<sup>5,8,10</sup> the rest of the reports describe dogs with multiple cranial 272 273 nerve dysfunction as part of middle cranial fossa syndrome (also known as cavernous sinus syndrome) or other neurological signs.<sup>3-7,9,11,12</sup> The middle cranial fossa is a paired 274 275 depression of the basiphenoid bone, located between the rostral and caudal cranial fossa

276 at the base of the skull.<sup>1</sup> Multiple cranial nerves travel through the middle cranial fossa including the oculomotor, trochlear and abducens nerves, as well as the three branches of 277 the trigeminal nerve.<sup>1</sup> These cranial nerves exit/enter the skull through the orbital fissure 278 279 (oculomotor nerve, trochlear nerve, abducens nerve and ophthalmic branch of the 280 trigeminal nerve), round foramen (maxillary branch of the trigeminal nerve), or oval foramen (mandibular branch of the trigeminal nerve).<sup>1</sup> The middle cranial fossa 281 282 syndrome is a well-recognised syndrome in dogs characterised by variable impairment of these nerves.<sup>2</sup> In the veterinary literature, this syndrome is usually referred to as 283 cavernous sinus syndrome.<sup>3,4,6,7,9,10</sup> However, this term should ideally be discarded, 284 285 because these cranial nerves are not directly related to the cavernous sinus.<sup>2</sup> Twelve of 22 dogs published in the veterinary literature showed unilateral deficits, <sup>3-8,10-12</sup> two cases 286 presented with unilateral signs and became bilateral within days,<sup>4,6</sup> and six cases had 287 bilateral deficits at presentation.<sup>4,5,9</sup> All cases were reported to be secondary to neoplasia 288 289 at the level of the middle cranial fossa or orbital fissure.<sup>3-12</sup> Ten dogs were euthanized at presentation,<sup>3-5,7,10,12</sup> and for the rest, the mean life expectancy after diagnosis was 7.1 290 months<sup>3,4,6,8-10</sup> with the longest survival time of 18 months.<sup>6</sup> Clinical signs deteriorated 291 over this period of time in all cases, precipitating euthanasia.<sup>3,4,6,8-10</sup> For this reason, the 292 293 inclusion criteria of the current study demanded a minimal follow-up time of 12 months 294 and only dogs with no deterioration of the neurological signs were included. 295 Magnetic resonance is the diagnostic imaging modality of choice in veterinary medicine for diseases affecting cranial nerves.<sup>23</sup> Magnetic resonance provides superior resolution 296 of the retrobulbar and intracranial CN III pathway compared to computed tomography.<sup>23</sup> 297 298 In this study, MRI enabled an accurate and detailed morphological assessment of the

299 lesions in all cases, only two dogs had equivocal enlargement of the CN III and no post-300 contrast enhancement on MRI. Localization and extension of the lesions were in 301 accordance with the neuroanatomic localization is all cases, and six months follow-up 302 MRI was possible in two. Based upon the location, shape, invasiveness, signal intensity, 303 homogeneity, and enhancement properties of the lesion, MRI features can help the 304 differentiation between neoplastic and inflammatory disorders in cranial nerves dysfunction.<sup>21,24,25</sup> Human patients that have cranial nerve enhancement following 305 306 contrast medium administration, but do not have an associated mass are considered to have cranial neuritis or ganglionitis rather than neoplasia.<sup>25</sup> Similarly in veterinary 307 308 medicine, dogs with trigeminal neuritis confirmed postmortem had diffuse enlargement of the nerve without a mass lesion.<sup>21</sup> In the present study, six cases had marked 309 310 enlargement of the CN III with mass effect in the surrounding tissue; three of these had 311 diffuse enhancement in most of the length of the CN III, and the other marked focal 312 enlargement of the nerve that could be considered a neoplastic lesion based on previously 313 published literature. The pathogenesis of the disease in this study remains currently 314 obscure, however, no deterioration of the clinical sings, no involvement of other cranial 315 nerves or general condition was noted in any the dogs with a follow-up time of 20 to 41 316 months, which would be expected with a neoplastic lesion over that length of time. 317 Therefore, we could conclude that idiopathic oculomotor neuropathy is not indicative of a 318 serious underlying disorder. 319 The main limitations of this study include the low number of cases, lack of pathologic 320 confirmation, lack of standardized MRI protocols and heterogeneous nature of the study 321 design. Results could be more definitively supported with a prospective multi-center

| 322 | study. Futures studies could also evaluate the sensitivity and specificity of MRI for       |
|-----|---------------------------------------------------------------------------------------------|
| 323 | detecting CN III abnormalities in dogs with idiopathic oculomotor neuropathy. Moreover,     |
| 324 | MRI features (including a more objective measurement for cranial nerve enlargement)         |
| 325 | could be evaluated as prognostic factors for regaining full CN III function. The lack of    |
| 326 | histopathology was unavoidable due to the non-fatal nature of this condition and the high   |
| 327 | morbidity that a surgical biopsy could carry due to the location of the lesion. The authors |
| 328 | applied stringent inclusion criteria for sampled animals in the current study in order to   |
| 329 | maximize the likelihood of a true positive diagnosis as much as possible.                   |
| 330 |                                                                                             |
| 331 | In conclusion, findings from the current study supported including idiopathic oculomotor    |
| 332 | neuropathy as a differential diagnosis for dogs presenting with unilateral                  |
| 333 | ophthalmoplegia/ophthalmoparesis (internal, external, or both) with the absence of other    |
| 334 | neurological and ophthalmic signs, and with MRI lesions restricted to CN III. These cases   |
| 335 | can have a good prognosis as the clinical signs do not deteriorate or can even improve      |
| 336 | without treatment.                                                                          |
| 337 |                                                                                             |
| 338 | List of Author Contributions                                                                |
| 339 | Category 1                                                                                  |
| 340 | (a) Conception and Design: Elsa Beltran, Roser Tetas Pont and Courtenay Freeman             |
| 341 | (b) Acquisition of Data: Roser Tetas Pont, Courtenay Freeman and Elsa Beltran               |
| 342 | (c) Analysis and Interpretation of Data: Roser Tetas Pont, Courtenay Freeman, Elsa          |

343 Beltran, Ruth Dennis and Claudia Hartley

Category 2

| 345 | (a) Drafting the Article: Roser Tetas Pont, Elsa Beltran and Courtenay Freeman            |
|-----|-------------------------------------------------------------------------------------------|
| 346 | (b) Revising Article for Intellectual Content: Roser Tetas Pont, Elsa Beltran,            |
| 347 | Courtenay Freeman, Claudia Hartley and Ruth Dennis                                        |
| 348 | Category 3                                                                                |
| 349 | (a) Final Approval of the Completed Article: Roser Tetas Pont, Courtenay Freeman,         |
| 350 | Claudia Hartley, Ruth Dennis and Elsa Beltran                                             |
| 351 |                                                                                           |
| 352 | Acknowledgments                                                                           |
| 353 | To our colleagues and referring veterinary surgeons for their support, and providing the  |
| 354 | contact details of their clients and the clinical histories of their patients.            |
| 355 | References                                                                                |
| 356 | 1. Evans HE, De Lahunta A. Cranial nerves (Chapter 18) in: Miller's anatomy of the        |
| 357 | dog, 4 <sup>th</sup> ed. Missouri: Saunders Elsevier 2013;708-730.                        |
| 358 | 2. De Lahunta A, Glass E, Kent M. Lower motor neurone: General visceral efferent          |
| 359 | system (Chapter 7) in: Veterinary neuronatomy and clinical neurology, 4 <sup>th</sup> ed. |
| 360 | Missouri: Saunders Elsevier 2015;162-180.                                                 |
| 361 | 3. Lee R, Griffiths IR. A comparison of cerebral arteriography and cavernous sinus        |
| 362 | venography in the dog. J Small Anim Pract 1972;5:225-238.                                 |
| 363 | 4. Lewis GR, Blanchard GL, Trapp AL. Ophthalmoplegia caused by thyroid                    |
| 364 | adenocarcinoma invasión of the cavernous sinus in the dog. J Am Anim Hosp                 |
| 365 | Assoc 1984;20:805-812.                                                                    |

| 366 | 5.  | Valentine BA, Summers BA, de Lahunta A, White CL, Kuhajda FP. Suprasellar         |
|-----|-----|-----------------------------------------------------------------------------------|
| 367 |     | germ cell tumors in the dog: a report of five cases and review of the literature. |
| 368 |     | Acta Neuropathol 1988;76:94-100.                                                  |
| 369 | 6.  | Theisen SK, Podell M, Schneider T, Wilkiw DA, Fenner WR. A retrospective          |
| 370 |     | study of cavernous sinus syndrome in 4 dogs and 8 cats. J Vet Intern Med          |
| 371 |     | 1996;10:65-71.                                                                    |
| 372 | 7.  | Fransson B, Kippenes H, Silver GE, Gavin PR. Magnetic resonance diagnosis:        |
| 373 |     | cavernous sinus syndrome in a dog. Vet Radiol Ultrasound 2000;41:536-538.         |
| 374 | 8.  | Larocca RD. Unilateral external and internal ophthalmoplegia caused by            |
| 375 |     | intracranial meningioma in a dog. Vet Ophthalmol 2000;3:3-9.                      |
| 376 | 9.  | Hernández-Guerra AM, López-Múrcia MM, Planells A, Corpa JM, Liste F.              |
| 377 |     | Computed tomographic diagnosis of unilateral cavernous sinus syndrome caused      |
| 378 |     | by a chondrosarcoma. Vet J 2001;174:206-208.                                      |
| 379 | 10. | Rossmeisl JHJ, Higgins MA, Inzana KD, Herring IP, Grant DC. Bilateral             |
| 380 |     | cavernous sinus syndrome in dogs: 6 cases (1999-2004). J Am Vet Med Assoc         |
| 381 |     | 2005;226:1105-1111.                                                               |
| 382 | 11. | Webb AA, Cullen CL, Rose P, Eisenbart D, Gabor L, Martinson S. Intracranial       |
| 383 |     | meningioma causing internal ophthalmoparesis in a dog. Vet Ophthalmol             |
| 384 |     | 2005;8:421-425.                                                                   |
| 385 | 12. | Grahn BH, Taylor SM, Sandmeyer LS. Diagnostic ophthalmology. Can Vet J            |
| 386 |     | 2007;48:321-322.                                                                  |

| 387 | 13. Mayhew PD, Bush WW, Glass EN. Trigeminal neuropathy in dogs: a               |
|-----|----------------------------------------------------------------------------------|
| 388 | retrospective study of 29 cases (1991–2000). J Am Anim Hosp Assoc                |
| 389 | 2002;38:262-270.                                                                 |
| 390 | 14. Varejao AS, Munoz A, Lorenzo V. (2006) Magnetic resonance imaging of the     |
| 391 | intratemporal facial nerve in idiopathic facial paralysis in the dog. Vet Radiol |
| 392 | Ultrasound 2006;47:328-333.                                                      |
| 393 | 15. Smith PM, Goncalves R, McConnell JF. Sensitivity and specificity of MRI for  |
| 394 | detecting facial nerve abnormalities in dogs with facial neuropathy. Vet Rec     |
| 395 | 2012;171:349-354.                                                                |
| 396 | 16. Jeandel A, Thibaud JL, Blot S. Facial and vestibular neuropathy of unknown   |
| 397 | origin in 16 dogs. J Small Anim Pract 2016;57:74-78.                             |
| 398 | 17. Kern TJ, Erb HN. Facial neuropathy in dogs and cats: 95 cases (1975–1985). J |
| 399 | Am Vet Med Assoc 1987;191:1604–1609.                                             |
| 400 | 18. Jaggy A, Oliver JE, Fergusson DC, Mahaffey EA, Glaus TJ. Neurological        |
| 401 | manifestations of hypothyroidism: a retrospective study of 29 dogs. J Vet Intern |
| 402 | Med 1994;8:328–336.                                                              |
| 403 | 19. Vitale CL, Olby NJ. Neurologic dysfunction in hypothyroid, hyperlipidemic    |
| 404 | labrador retrievers. J Vet Intern Med 2007;21:1316-1322.                         |
| 405 | 20. Rossmeisl JHJ. Resistance of the peripheral nervous system to the effects of |
| 406 | chronic canine hypothyroidism. J Vet Intern Med 2010;24:875-881.                 |
| 407 | 21. Schultz RM, Tucker RL, Gavin PR, Bagley R, Saveraid TC, Berry CR. Magnetic   |
| 408 | resonance imaging of acquired trigeminal nerve disorders in six dogs. Vet Radiol |
| 409 | Ultrasound 2007;48:101–104.                                                      |

| 410 | 22. Motta L, Altay UM, Skerritt GC. Bell's palsy with concomitant idiopathic cranial |
|-----|--------------------------------------------------------------------------------------|
| 411 | nerve polyneuropathy in seven dogs. J Small Anim Pract 2011;52:397.                  |
| 412 | 23. Parry AT, Volk HA. Imaging the cranial nerves. Vet Rad Ultrasound                |
| 413 | 2011;52:S32-S41.                                                                     |
| 414 | 24. Seruca C, Rodenas S, Leiva M, Peña T, Añor S. Acute postretinal blindness:       |
| 415 | ophthalmic, neurologic and magnetic imaging findings in dogs and cats (seven         |
| 416 | cases). Vet Ophthalmol 2010;13:307-314.                                              |
| 417 | 25. Saremi F, Helmy M, Farzin S, Zee CS, Go JL. MRI of cranial nerve enhancement.    |
| 418 | Am J Roentgenology 2005;6:1487-1497.                                                 |
|     |                                                                                      |

# 421 Appendices

- 422 Appendix 1. Clinical Findings for Dogs with Ophthalmoplegia/ophthalmoparesis and
- 423 Presumed Idiopathic Oculomotor Neuropathy.

|      | Signalment      | Duration clinical | Side of        | Parasympathetic | Motor component | CSF nucleated cell | CSF total protein |
|------|-----------------|-------------------|----------------|-----------------|-----------------|--------------------|-------------------|
| Case | (Breed age sex) | signs (days)      | clinical signs | component CNIII | CNIII           | count (cells/uL)   | (g/L)             |
| 1    | Gh 10y MN       | 5                 | Left           | Plegia          | Not affected    | 0                  | 0.24              |
| 7    | BC 8y FN        | L                 | Right          | Plegia          | Not affected    | Not available      | Not available     |
| 3    | BT 4y FN        | 30                | Right          | Plegia          | Not affected    | 1                  | 0.25              |
| 4    | Bx 5y ME        | 5                 | Right          | Paresis         | Paresis         | 0                  | 0.25              |
| 5    | RC 5y MN        | 5                 | Right          | Paresis         | Paresis         | 0                  | 0.19              |
| 9    | Bx 3y FE        | 4                 | Right          | Plegia          | Paresis         | 8                  | 0.24              |
| ٢    | Bx 7y FN        | 14                | Left           | Plegia          | Paresis         | 9                  | 0.24              |
| 8    | LR 4y FN        | 180               | Left           | Plegia          | Paresis         | -                  | 0.27              |
| 6    | Bx 8y FN        | 4                 | Right          | Plegia          | Paresis         | 1                  | 0.31              |
| 10   | GR 7y MN        | 1                 | Left           | Plegia          | Paresis         | 0.0                | 0.22              |
| 11   | Be 6y MN        | 30                | Right          | Plegia          | Paresis         | 4                  | 0.32              |
| 12   | SBT 9.5y ME     | 2                 | Left           | Plegia          | Paresis         | 0                  | 0.28              |
| 13   | BC 7y FN        | 30/730*           | Right          | Plegia          | Plegia          | 4                  | 0.35              |
| 14   | We 3.5y FN      | 5                 | Left           | Plegia          | Plegia          | 0                  | 0.80              |

*Footnote:* Be, Beagle; BC, Border Collie; BT, Border Terrier; Bx, Boxer; CNIII, third
cranial nerve; CSF, cerebrospinal fluid; FE, female entire; FN, female neutered; Gh,

- 427 Greyhound; GR, Golden Retriever; LR, Labrador Retriever; ME, male entire; MN, male
- 428 neutered; RC, Rough Collie; SBT, Staffordshire Bull Terrier; We, Weimaraner.
- 429 \*, in Case 13 the mydriasis was noted a month prior to presentation and the
- 430 neuromuscular strabismus two years before.

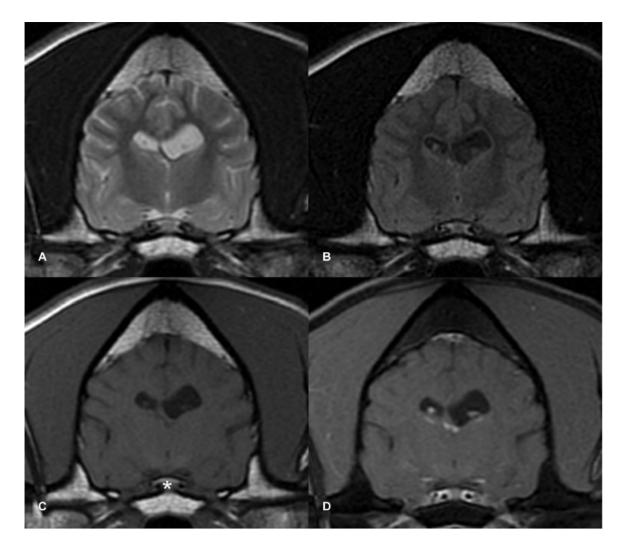
- 434 Appendix 2. Magnetic Resonance Findings for Dogs with
- 435 Ophthalmoplegia/ophthalmoparesis Associated with Presumed Idiopathic Oculomotor
- 436 Neuropathy.
- 437

|      | Side of MRI | Enlargement | Intensity of CNIII in | CNIII in |     | Degree of contrast | Appearance of contrast    | Anatomical area of |
|------|-------------|-------------|-----------------------|----------|-----|--------------------|---------------------------|--------------------|
| Case | findings    | CNIII       | T2W                   | FLAIR    | TIW | enhancement        | enhancement               | the lesion         |
| 1    | Left        | Marked      | Hyper                 | Hyper    | Iso | Marked             | Diffuse and heterogeneous | MCF                |
| 2    | Right       | Equivocal   | Iso                   | Iso      | Iso | No enhancement     | No enhancement            | MCF                |
| 3    | Right       | Mild        | Iso                   | Iso      | Iso | Mild               | Focal and homogeneous     | MCF                |
| 4    | Right       | Marked      | Hyper                 | Iso      | Iso | Marked             | Diffuse and heterogeneous | OF and MCF         |
| 5    | Right       | Equivocal   | Hyper                 | N/A      | Iso | Mild               | Focal and homogeneous     | MCF                |
| 9    | Right       | Mild        | Hyper                 | Hyper    | Iso | Mild               | Focal and homogeneous     | MCF                |
| L    | Left        | Mild        | Hyper                 | Hyper    | Iso | Mild               | Focal and heterogeneous   | MCF                |
| 8    | Left        | Marked      | Hypo                  | Hypo     | Iso | Marked             | Focal and homogeneous     | MCF                |
| 6    | Right       | Marked      | Hyper                 | N/A      | Iso | Marked             | Focal and heterogeneous   | MCF                |
| 10   | Left        | Equivocal   | Iso                   | Iso      | Iso | No enhancement     | No enhancement            | MCF                |
| 11   | Right       | Marked      | Iso                   | Hypo     | Iso | Marked             | Focal and homogeneous     | MCF                |
| 12   | Left        | Mild        | Hyper                 | Hyper    | Iso | Mild               | Diffuse and homogenous    | OF and MCF         |
| 13   | Right       | Mild        | Hypo                  | Hypo     | Iso | Mild               | Focal and homogeneous     | MCF                |
| 14   | Left        | Marked      | Iso                   | Hypo     | Iso | Marked             | Diffuse and homogeneous   | OF and MCF         |
|      |             |             |                       |          |     |                    |                           |                    |

*Footnote:* CNIII, third cranial nerve (oculomotor nerve); Hyper, hyperintensive; Hypo,

- 440 hypointensive; Iso, isointense; MCF, middle cranial fossa; MRI, magnetic resonance
- 441 imaging; N/A, not available; OF, orbital fissure.

- 445 Appendix 3. Treatment, Progression and Follow-up for Dogs with
- 446 Ophthalmoplegia/ophthalmoparesis Associated with Idiopathic Oculomotor Neuropathy.


|      |                                                  | Progression clinical signs during the FU period             | Long term FU |                             |
|------|--------------------------------------------------|-------------------------------------------------------------|--------------|-----------------------------|
| Case | Systemic corticosteroid treatment                | (CNIII motor and parasympathetic components)                | (months)     | Reason for lost FU          |
| -    | No                                               | Unchanged                                                   | 24           | Lost to FU                  |
| 7    | No                                               | Unchanged                                                   | 77           | End of study                |
| б    | Prednisolone 1 mg/kg BID for 3w then taping down | Unchanged                                                   | 39           | End of study                |
| 4    | Prednisolone 1 mg/kg BID for 3w then taping down | Motor and parasympathetic components at 1 w post referral   | 18           | Lost to FU                  |
| 5    | No                                               | Unchanged                                                   | 24           | Lost to FU                  |
| 9    | No                                               | Motor and parasympathetic components at 3w post referral    | 84           | Death for unrelated reasons |
| 7    | No                                               | Motor component at 3w post referral                         | 42           | Death for unrelated reasons |
| 8    | No                                               | Unchanged                                                   | 26           | Lost to FU                  |
| 6    | Prednisolone 1 mg/kg SID for 2w then taping down | Motor component at 4m post referral (already off treatment) | 41           | Death for unrelated reasons |
| 10   | Prednisolone 1 mg/kg SID for 1w then discontinue | Motor component at 1m post referral (already off treatment) | 20           | End of study                |
| 11   | Prednisolone 1 mg/kg BID for 2w then taping down | Unchanged                                                   | 20           | End of study                |
| 12   | No                                               | Motor component at 2w post referral                         | 12           | End of study                |
| 13   | Prednisolone 1 mg/kg SID for 1m then taping down | Unchanged                                                   | 18           | Death for unrelated reasons |
| 14   | Prednisolone 1 mg/kg SID for 1m then taping down | Motor and parasympathetic components at 1m post referral    | 30           | End of study                |

- 448 Footnote: CNIII, third cranial nerve (oculomotor nerve); FU, follow-up; MRI, magnetic
- 449 resonance imaging.
- 450
- 451

# **Figure legends**



457 Figure 1. Mydriasis secondary to internal ophthalmoplegia, and upper eyelid ptosis and
458 neuromuscular strabismus (dorsolateral) secondary to external ophthalmoparesis of the
459 left eye in a nine and a half-year-old male entire Staffordshire Bull Terrier (Case 12).
460



| 463 | Figure 2. Transverse magnetic resonance images obtained at the level of the pituitary   |
|-----|-----------------------------------------------------------------------------------------|
| 464 | gland (asterisk) in a seven-year-old male neutered Golden Retriever presented with      |
| 465 | internal ophthalmoplegia and external ophthalmoparesis of the left eye (Case 10). There |
| 466 | is equivocal enlargement and isointensity of the left oculomotor nerve on T2W (A), on   |
| 467 | FLAIR (B), and on T1W pre-contrast (C) with no enhancement of left oculomotor           |
| 468 | following contrast administration (D).                                                  |

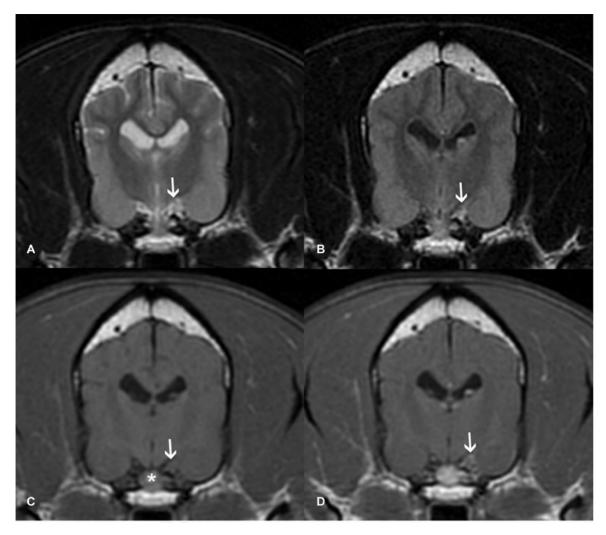



Figure 3. Transverse magnetic resonance images obtained at the level of the pituitary
gland (asterisk) in a seven-year-old female neutered Boxer presented with internal
ophthalmoplegia and external ophthalmoparesis of the left eye (Case 7). There is mild
enlargement of the left oculomotor nerve with hyperintensity on T2W (arrow; A),
hyperintensity on FLAIR (arrow; B), and isointensity on T1W pre-contrast (arrow; C)
with mild focal heterogeneous enhancement following contrast administration (arrow; D).

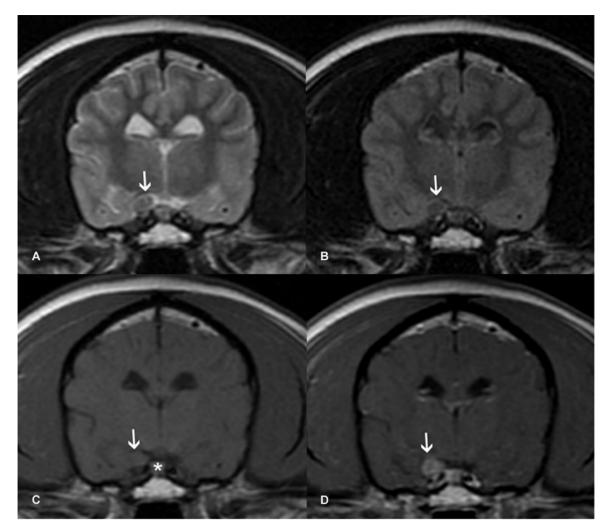
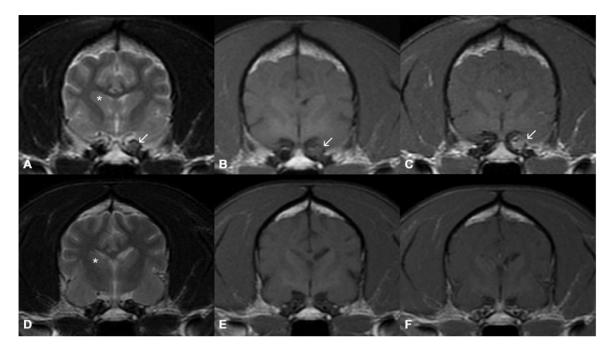




Figure 4. Transverse magnetic resonance images obtained at the level of the pituitary
gland (asterisk) in a six-year-old male neutered Beagle presented with internal
ophthalmoplegia and external ophthalmoparesis of the right eye (Case 11). There is
marked enlargement of the right oculomotor nerve with isointensity on T2W (arrow; A),
hypointensity on FLAIR (arrow; B), and isointensity on T1W pre-contrast (arrow; C)
with marked focal homogeneous enhancement following contrast administration (arrow;
D).



| 486 | Figure 5. Transverse magnetic resonance images obtained at the level of the head of the   |
|-----|-------------------------------------------------------------------------------------------|
| 487 | caudate nucleus (asterisk) in a three and a half-year-old female neutered Weimaraner      |
| 488 | presented with internal ophthalmoplegia and external ophthalmoparesis of the left eye     |
| 489 | (Case 14). There is marked enlargement of the left oculomotor nerve with isointensity on  |
| 490 | T2W (arrow; A) and isointensity on T1W pre-contrast (arrow; B), with marked diffuse       |
| 491 | homogeneous enhancement following contrast administration (arrow; C) at presentation.     |
| 492 | At six-moth follow-up scan, there is resolution of the magnetic resonance findings (D-F). |
| 493 |                                                                                           |