29 research outputs found

    Investigation of a Limited but Explosive COVID-19 Outbreak in a German Secondary School

    Get PDF
    The role of schools as a source of infection and driver in the coronavirus-pandemic has been controversial and is still not completely clarified. To prevent harm and disadvantages for children and adolescents, but also adults, detailed data on school outbreaks is needed, especially when talking about open schools employing evidence-based safety concepts. Here, we investigated the first significant COVID-19 school outbreak in Hamburg, Germany, after the re-opening of schools in 2020. Using clinical, laboratory, and contact data and spatial measures for epidemiological and environmental studies combined with whole-genome sequencing (WGS) analysis, we examined the causes and the course of the secondary school outbreak. The potential index case was identified by epidemiological tracking and the lessons in classrooms with presumably high virus spreading rates and further infection chains in the setting. Sequence analysis of samples detected one sample of a different virus lineage and 25 virus genomes with almost identical sequences, of which 21 showed 100% similarity. Most infections occurred in connection with two lesson units of the primary case. Likely, 31 students (12–14 years old), two staff members, and three family members were infected in the school or the typical household. Sequence analysis revealed an outbreak cluster with a single source that was epidemiologically identified as a member of the educational staff. In lesson units, two superspreading events of varying degrees with airborne transmission took place. These were influenced by several parameters including the exposure times, the use of respiratory masks while speaking and spatial or structural conditions at that time.Peer Reviewe

    gNOMO : a multi-omics pipeline for integrated host and microbiome analysis of non-model organisms

    Get PDF
    The study of bacterial symbioses has grown exponentially in the recent past. However, existing bioinformatic workflows of microbiome data analysis do commonly not integrate multiple meta-omics levels and are mainly geared toward human microbiomes. Microbiota are better understood when analyzed in their biological context; that is together with their host or environment. Nevertheless, this is a limitation when studying non-model organisms mainly due to the lack of well-annotated sequence references. Here, we present gNOMO, a bioinformatic pipeline that is specifically designed to process and analyze non-model organism samples of up to three meta-omics levels: metagenomics, metatranscriptomics and metaproteomics in an integrative manner. The pipeline has been developed using the workflow management framework Snakemake in order to obtain an automated and reproducible pipeline. Using experimental datasets of the German cockroach Blattella germanica, a non-model organism with very complex gut microbiome, we show the capabilities of gNOMO with regard to meta-omics data integration, expression ratio comparison, taxonomic and functional analysis as well as intuitive output visualization. In conclusion, gNOMO is a bioinformatic pipeline that can easily be configured, for integrating and analyzing multiple meta-omics data types and for producing output visualizations, specifically designed for integrating paired-end sequencing data with mass spectrometry from non-model organisms

    Investigation of a Limited but Explosive COVID-19 Outbreak in a German Secondary School

    Get PDF
    The role of schools as a source of infection and driver in the coronavirus-pandemic has been controversial and is still not completely clarified. To prevent harm and disadvantages for children and adolescents, but also adults, detailed data on school outbreaks is needed, especially when talking about open schools employing evidence-based safety concepts. Here, we investigated the first significant COVID-19 school outbreak in Hamburg, Germany, after the re-opening of schools in 2020. Using clinical, laboratory, and contact data and spatial measures for epidemiological and environmental studies combined with whole-genome sequencing (WGS) analysis, we examined the causes and the course of the secondary school outbreak. The potential index case was identified by epidemiological tracking and the lessons in classrooms with presumably high virus spreading rates and further infection chains in the setting. Sequence analysis of samples detected one sample of a different virus lineage and 25 virus genomes with almost identical sequences, of which 21 showed 100% similarity. Most infections occurred in connection with two lesson units of the primary case. Likely, 31 students (12–14 years old), two staff members, and three family members were infected in the school or the typical household. Sequence analysis revealed an outbreak cluster with a single source that was epidemiologically identified as a member of the educational staff. In lesson units, two superspreading events of varying degrees with airborne transmission took place. These were influenced by several parameters including the exposure times, the use of respiratory masks while speaking and spatial or structural conditions at that time

    Synopse virologischer Analysen im Nationalen Referenzzentrum für Influenzaviren während der COVID-19-Pandemie

    Get PDF
    Das Nationale Referenzzentrum für Influenzaviren gewinnt durch die fortlaufende Untersuchung von Proben aus den Sentinelpraxen der Arbeitsgemeinschaft Influenza einen umfassenden Überblick über die zirkulierenden respiratorischen Erreger in Deutschland. Dazu gehören neben SARS-CoV-2 und den Influenzaviren auch das Respiratorische Synzytialvirus, Parainfluenzaviren, humane Metapneumoviren, humane saisonale Coronaviren und humane Rhinoviren. Die Analyseergebnisse von 15.660 Sentinelproben sowie weiteren Isolaten im Zeitraum von Kalenderwoche 5/2020 bis 21/2022 werden im Epidemiologischen Bulletin 22/2022 vorgestellt. Beschrieben werden außerdem die Zirkulation respiratorischer Erreger im Vergleich zu vorpandemischen Saisons, die molekulare Charakterisierung und phylogenetische Analysen, die Überprüfung der Passgenauigkeit der eingesetzten Influenzaimpfstoffe und die Resistenzprüfung von Influenzaviren

    Purple: A Computational Workflow for Strategic Selection of Peptides for Viral Diagnostics Using MS-Based Targeted Proteomics

    Get PDF
    Emerging virus diseases present a global threat to public health. To detect viral pathogens in time-critical scenarios, accurate and fast diagnostic assays are required. Such assays can now be established using mass spectrometry-based targeted proteomics, by which viral proteins can be rapidly detected from complex samples down to the strain-level with high sensitivity and reproducibility. Developing such targeted assays involves tedious steps of peptide candidate selection, peptide synthesis, and assay optimization. Peptide selection requires extensive preprocessing by comparing candidate peptides against a large search space of background proteins. Here we present Purple (Picking unique relevant peptides for viral experiments), a software tool for selecting target-specific peptide candidates directly from given proteome sequence data. It comes with an intuitive graphical user interface, various parameter options and a threshold-based filtering strategy for homologous sequences. Purple enables peptide candidate selection across various taxonomic levels and filtering against backgrounds of varying complexity. Its functionality is demonstrated using data from different virus species and strains. Our software enables to build taxon-specific targeted assays and paves the way to time-efficient and robust viral diagnostics using targeted proteomics.Peer Reviewe

    A bioinformatic pipeline for simulating viral integration data

    Get PDF
    Viral integration is a complex biological process, and it is useful to have a reference integration dataset with known properties to compare experimental data against, or for comparing with the results from computational tools that detect integration. To generate these data, we developed a pipeline for simulating integrations of a viral or vector genome into a host genome. Our method reproduces more complex characteristics of vector and viral integration, including integration of sub-genomic fragments, structural variation of the integrated genomes, and deletions from the host genome at the integration site. Our method [1] takes the form of a snakemake [2] pipeline, consisting of a Python [3] script using the Biopython [4] module that simulates integrations of a viral reference into a host reference. This produces a reference containing integrations, from which sequencing reads are simulated using ART [5]. The IDs of the reads crossing integration junctions are then annotated using another python script to produce the final output, consisting of the simulated reads and a table of the locations of those integrations and the reads crossing each integration junction. To illustrate our method, we provide simulated reads, integration locations, as well as the code required to simulate integrations using any virus and host reference. This simulation method was used to investigate the performance of viral integration tools in our research [6]

    Whole genome sequencing reveals extended natural transformation in Campylobacter impacting diagnostics and the pathogens adaptive potential

    Get PDF
    Campylobacter is the major bacterial agent of human gastroenteritis worldwide and represents a crucial global public health burden. Species differentiation of C. jejuni and C. coli and phylogenetic analysis is challenged by inter-species horizontal gene transfer. Routine real-time PCR on more than 4000 C. jejuni and C. coli field strains identified isolates with ambiguous PCR results for species differentiation, in particular, from the isolation source eggs. K-mer analysis of whole genome sequencing data indicated the presence of C. coli hybrid strains with huge amounts of C. jejuni introgression. Recombination events were distributed over the whole chromosome. MLST typing was impaired, since C. jejuni sequences were also found in six of the seven housekeeping genes. cgMLST suggested that the strains were phylogenetically unrelated. Intriguingly, the strains shared a stress response set of C. jejuni variant genes, with proposed roles in oxidative, osmotic and general stress defence, chromosome maintenance and repair, membrane transport, cell wall and capsular biosynthesis and chemotaxis. The results have practical impact on routine typing and on the understanding of the functional adaption to harsh environments, enabling successful spreading and persistence of Campylobacter.Peer Reviewe

    Isling: A Tool for Detecting Integration of Wild-Type Viruses and Clinical Vectors

    Get PDF
    Detecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer

    Large Conization—Retrospective Monocentric Results for Fertility Preservation in Young Women with Early Stage Cervical Cancer

    No full text
    The shorter cervical segment after classic radical trachelectomy (RT) imposes a number of pregnancy associated risk factors. In this aspect, large conization (LC) could be an oncologically safe alternative to RT in young women with early stage cervical cancer who want to spare their fertility. Our aim was to evaluate fertility-sparing surgical treatment of early stage cervical cancer after the introduction of LC. Our objectives were to assess surgical, oncological, fertility and obstetric outcomes. We retrospectively investigated oncological and fertility outcomes of patients who underwent LC in a large oncological single University centre between 2009 and 2014. Medical records were reviewed and analysed for surgical, oncological, fertility and obstetric outcomes. Postal questionnaires were collected to further evaluate and validate the fertility and obstetric outcomes. A total of 23 LCs were analysed. Seven patients had to undergo secondary radical hysterectomy after LC due to unclear resection margins. Nine of 16 women tried to conceive, of which all nine became pregnant. Seven patients underwent a prophylactic cerclage between 13 and 16 gestational weeks and seven women delivered 9 children; the majority of women conceived spontaneously. Follow-up time was a median of 3.9 years (2.6-8 years). There was no relapse of cervical cancer in the investigated timeframe. Early stage cervical cancers treated by LC are associated with excellent oncological outcomes. LC appears to be a safe option for eligible women who intend to maintain their fertility
    corecore