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Abstract

Detecting viral and vector integration events is a key step when investigating interactions between viral
and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy.
For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B
virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore,
identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene ther-
apies. To address these questions, we developed isling, the first tool specifically designed for identifying
viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses
complexities in integration behaviour including integration of fragmented genomes and integration junc-
tions with ambiguous locations in a host or vector genome, and can also flag possible vector recombina-
tions. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration
tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and
application-agnostic tool that will enable a broad range of investigations into viral and vector integration.
These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well
as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.

Crown Copyright © 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:/
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction such as retroviruses, integrate into a host’s
genome in a controlled and regulated manner,

Genetic material from a viral genome or the typically as an obligate step in their life cycle,
therapeutic cassette of a gene therapy vector can  while others, such as Adeno-associated viruses
be integrated into the host genome. Some viruses, (AAV) and human papillomavirus (HPV), integrate
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in a more random and stochastic manner. Sporadic
integration events such as these have been linked
to oncogenesis.' ™

Integration events from both wild-type viruses and
gene therapy vectors pose potential health risks.
Characterising integrated viruses and vectors is
therefore key when elucidating the role of
integration events in cancer,” ° evaluating genotox-
icity of gene therapy vectors,”® and discovering
novel viral genomes and genomic fragments,
including endogenous viral elements.’® Since wild-
type viruses and their vectorized counterparts may
have different mechanisms of integration,”’ com-
paring their patterns of integration across the gen-
ome is also an important step in investigating their
different modes of integration.

The goal of integration site analysis is to identify
junctions between integrated viral DNA, and a
host genome. There are several challenges in this
process, some of which are specific to identifying
gene therapy vector integrations, and others that
are specific to wild-type viral integrations. For
example in gene therapy, integrations of AAV
vectors tend to be distributed and
heterogenous,®'?'* and every integration event is
potentially of interest. Rearrangement and fragmen-
tation can occur for certain vectors, such as recom-
binant AAV vectors,'® during production, and the
episomal presence of these non-standard genomes
can confound results if not explicitly considered.
Conversely, wild-type viruses are typically investi-
gated in the context of cancer-causing integrations,
where the focus is on clonally expanded integra-
tions. The challenge here is that integrated viruses
may differ from previously described isolates.”

Several bioinformatic tools have been developed
to address the challenge of identifying integration
junction locations (reviewed by Chen et al..'® These
tools are often designed to detect either certain
types of integration events or require s7pecific input
data. Tools such VIRUSBreakend,'” Polyidus,*
ViFi'® and VERSE'? were designed to detect wild-
type viral integration events, but cannot deal with
vector-specific issues such as vector rearrange-
ment and low coverage of rare integration sites.
Other tools are designed to specifically identify viral
vector integrations, such as INSPIIRED,?°?' Ub-
ISAP,? and VISA® but require NGS data prepared
by ligation-mediated PCR (LM-PCR) based
approaches.”*?® These approaches also assume
the entire viral genome is integrated, which may
not be the case for viruses for which integration is
not a part of their life cycle. Other tools such as
GENE-IS?® and VSeqg-Toolkit?” are more flexible
by detecting vector fragments and fusions using
data from hybridization capture or LM-PCR ampli-
con libraries,?®?° however lack the ability to tailor
analyses to wild-type or vector analyses for exam-
ple by automatically selecting high-clonality junc-
tions in wild-type datasets. The most application-
agnostic approaches are structural variation tools,

such as Seeksv,*° however, these are inefficient
for whole-genome or RNA-seq datasets because
they identify all structural variations, not only inte-
grations, resulting in excess computation. These
excess structural variations may be numerous,
especially in the case of RNA-seq data where each
splice junction may appear to be a structural
variation.

Many of the existing tools also suffer from
usability issues, including excessive runtime or
memory usage, as well as reliance on multiple
third-party dependencies, making installation
difficult. Some tools only work with particular
reference genomes (most commonly human)
making them inapplicable in safety and efficacy
studies of gene therapy vectors, which often use
model organisms.

To address these issues, we developed isling, a
tool for identifying integration junctions for both
wild-type viruses as well as clinical vectors. Isling
handles issues arising during vector integration,
such are rearrangement and fragmentation, and is
able to detect clonally expanded events for wild-
type viruses. Isling is also agnostic with regards to
host organism and integrated virus/vector, and
fully scalable to large NGS datasets.

Here, we demonstrate isling’s utility for analysing
wild-type virus and vector integration datasets. To
benchmark isling’s performance, we generated
synthetic test datasets for vector and wild-type
viral integrations, and used them to compare the
performance of isling against other tools. We
further compared the performance of isling and
other tools on previously published whole-genome
sequencing and RNA-seq datasets, containing
both wild-type and vector integrations.

Results

Comparison of viral integration tools on
simulated data

We developed isling (Figure 1) to identify
integrations of both wild-type and vector genomes
into a host genome (see Methods for details), and
compared it against several other viral integration
tools. We first compared the performance of isling
with four other viral integration detection tools,
seeksv,*° Polyidus,* ViFi'® and VSeqg-Toolkit,”” on
simulated data (Figure 2, Supplementary table 2).
Viral and vector integrations were simulated by inte-
grating either AAV2 (Figure 2(A)—(D)) or a pre-
clinical recombinant AAV vector encoding human
ornithine transcarbamylase (rAAV(OTC) vector;
Figure 2(E)—(H)) into human chromosome 1.

Isling had the highest overlap between identified
and simulated integration junctions as measured
by the Jaccard statistic, which is a value between
0 (no overlap between simulated and output
integration sites), and 1 (perfect overlap; Figure 2
(A), (E); Supplementary table 2); for isling this
statistic was 150% higher on the AAV2 dataset
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Figure 1. Steps taken by isling to identify integrations. In the preprocessing phase, reads are de-duplicated, split
into multiple fastq files for parallel processing, stripped of adapters and merged if R1 and R2 are overlapping. All pre-
processing steps are optional. In the alignment phase, reads are first aligned to the viral reference, and then reads of
interest are extracted and aligned to the host reference. In the integration detection phase, integrations are detected
based on the host and viral alignments. Putative integrations are also examined for vector rearrangements and
location ambiguity. In the postprocessing phase, integrations are filtered based on user-defined criteria and separated
into pools based on their location ambiguity (unambiguous, ambiguous in host, ambiguous in virus, or both
ambiguous). Integrations with an unambiguous location are then clustered based on host and viral coordinates. The
two different clustering methods are illustrated bottom right.
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Figure 2. Benchmarking viral integration tool performance on two simulated integration datasets. A-D: Performance
of isling, Polyidus, seeksv, ViFi and VSeq-Toolkit on a dataset of wild-type AAV2 integrations into human chr1 (n=3
replicates, 1000 integrations each). Tool performance was assessed by Jaccard statistic (A), distance from each
simulated integration to the nearest output integration (B), distance from each output integration to the nearest
simulated integration (C), as well as true positive rate (TPR) and positive predictive value (PPV) calculated by
applying a threshold of 5 bp to these distances (D; vertical line in B, C). E-H: Performance of the same tools on an
AAV vector dataset, comparing using Jaccard statistic (E), distance from each simulated integration to the nearest
output integration (F), distance from each output integration to the nearest simulated integration (G), TPR and PPV
(H). A, E are boxplots showing the Jaccard statistic from each of three replicates, B, C, F and G are frequency
polynomials aggregating all the distances observed amongst all replicates, and in D, H each point represents the PPV

and TPR from one replicate.

and 170% higher on the rAAV(OTC) dataset
compared to the next best tool (VSeg-Toolkit).
The Jaccard statistic for isling was significantly
higher than Polyidus (Dunn’s test, p-value
adjusted using a Benjamini-Hochberg correction;
AAV2: z = —2.46, n = 3 each group, p = 0.045;
OTC: z= —3.29, n = 3 each group, p = 0.01) and
ViFi (AAV2: z = —-3.29, n = 3 each group,
p = 0.001; OTC: z = —2.46, n = 3 each group,
p = 0.046), but the increases over seeksv (AAV2:
—1.64, n = 3 each group, p = 0.17; OTC
—1.64, n = 3 each group, p = 0.17), and
Seqg-Toolkit (AAV2: z= —0.82, n = 3 each group,
p = 0.41; AAV2: z = —0.82, n = 3 each group,
p = 0.41) were not significant.

Isling was also very precise, as most of the
distances between simulated integration
breakpoints and junctions identified by isling were
small (<5bp; Figure 2(B) and (F)). Conversely, the
distribution of distances between each identified
junction to its nearest simulated breakpoint
indicated that isling had also few false positives,
since as the only major peak was at 0-3 bp
(Figure 2(C) and (G)). Figure 2(D) and (H)
summarize these observations, showing that while
all tools had a high positive predictive value

z
z
\Y

(PPV), indicating hardly any false positives, isling
also had the highest true positive rate (TPR) and
therefore lowest false negative rate of all tools.
Isling achieved this on both datasets, confirming
that it is application agnostic.

Seeksv, which is a tool aimed at analysis of wild-
type integrations, performed well at detecting AAV2
integrations but suffered a performance decrease
on the rAAV(OTC) dataset as measured by the
Jaccard statistic (Figure 2(A) versus (E)) and TPR
(Figure 2(D) versus (H)). This difference was also
visible in the distribution of distances from each
simulated integration to the nearest output
integration, with a visibly Iarg7er peak at large
distances (1 x 10°-1 x 10’ bp). This peak
indicated many more missed integrations in the
rAAV(OTC) condition (Figure 2(B) and (F)).

VSeqg-Toolkit performed well on both datasets
despite being designed for vector data, and had
the second highest Jaccard statistic (Figure 2(A)
and (E)), and the second highest TPR (Figure 2
(D) and (H)) for both datasets. The gap in
performance between isling and VSeqg-Toolkit was
larger in the Jaccard statistic compared to the
TPR, indicating that while VSeg-Toolkit correctly
identified some integrations (TPR in Figure 2(D)
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and (H)), it reported their junctions differently than
isling, resulting in a lower Jaccard statistic.

Conversely, ViFi and Polydus, both suitable for
wild-type virus data analysis, had the lowest
Jaccard statistics and TPR of all tools. This was
true, even for the wild-type AAV2 dataset, where
they identified just under half (ViFi) and just under
a quarter (Polyidus) of simulated integrations
(Figure 2(D)). Their performance was worse on
the rAAV(OTC) dataset, likely because this
dataset had low coverage and both tools require
multiple supporting reads to call an integration
junction. ViFi and Polyidus also had very low
Jaccard statistics for both datasets (Figure 2(A)
and (E)). For the AAV2 dataset, this a result of the
larger intervals that ViFi reports for integration
junctions, which are much longer than the true
simulated junction lengths (average window of
170 + 130 bp versus 1.2 + 1.4 bp for isling on the
AAV2 dataset; Supplementary table 3). These
larger intervals resulted in a larger union between
simulated and reported junctions, and therefore a
lower Jaccard statistic. For Polyidus, the lower
Jaccard statistic was the result of fewer identified
integration events compared to the other tools,
and therefore a lower intersection (96 bp mean
intersection compared to 1625 bp for isling on the
AAV2 dataset; Supplementary table 3). For the
rAAV(OTC) dataset, the low Jaccard for both tools
was caused by a high number of false negatives,
consistent with the low TPRs observed (Figure 2
(D) and (H)).

Both isling and VSeg-Toolkit also had a second
peak in the distance from simulated integration
junction to the nearest output integration junction
at around 1 x 10? bp (Figure 2(B) and (F)). This
peak is the result of integration events with an
associated deletion in the host genome at the
integration site, which are difficult to detect and
missed altogether by the other tools. Isling and
VSeqg-Toolkit detected at least one junction from
these events, resulting in distances from the
missed junction to the closest output junction of
roughly 500 bp, hence the peak around 1 x 107 bp.

Consistent with the lack of false positives seen for
all tools, there were no significant differences in the
median PPV of isling compared to any of the other
tools (Dunn’s test, p-values adjusted using the
Benjamini-Hochberg method, n = 3 each group;
p = 0.20, 0.45, 0.21, 0.45 for isling versus
Polyidus, seeksv, ViFi and VSeqg-Toolkit,
respectively, for the AAV2 data). On the other
hand, the number of missed events varied
between tools; the TPR for isling was significantly
higher than Polyidus and ViFi for the AAV2 data,
although the difference between isling and seeksv
and VSeg-Toolkit was not significant (Dunn’s test,
p-values adjusted using the Benjamani-Hochberg
method, n = 3 each group; p = 0.010, 0.045, 0.17
and 0.41 for isling versus Polyidus, ViFi, seeksv
and VSeqg-Toolkit, respectively). Further details of

the statistical tests can be found in Supplementary
File 1.

We next examined the rAAV(OTC) vector
integration condition more closely, investigating
how performance of these tools varied depending
on the host chromosome used and the fold-
coverage (Figure 3). Fold-coverage can affect
accuracy since integrations are harder to detect
when there are fewer reads that cross their host/
virus junctions, while using different host
chromosomes can lead to different alignments of
the reads from the rAAV(OTC) vector, which
contains portions of human chri4 (hAAT
promoter) and chrX (OTC enhancer).”’

Figure 3 shows the Jaccard statistic, mean
positive predictive value (PPV) and true positive
rate (TPR) for the five tools when varying fold-
coverage and host reference chromosome,
respectively. Isling had the highest Jaccard
statistic over a range of fold-coverage values
(Figure 3(A)). Indeed, the differences in Jaccard
statistic between the tools were significant for all
chromosomes and levels of fold-coverage, as
indicated by the results of multiple Kruskal-Wallis
tests (H = 10.38-13.5, df = 4, p = 0.014-0.016, p-
values adjusted using the Benjamini-Hochberg
method; see Supplementary File 1 for the full
details of each test). For all tools, the PPV was
constant across different fold-coverage values,
with the exception of a slight drop-off at high
coverage for isling, a larger drop-off for VSeqg-
Toolkit, and an increase for Polyidus from low to
high fold-coverage (Figure 3(B)). There is a clear
rise in TPR with fold-coverage increase (Figure 3
(C)), consistent with more supporting reads for
each junction at higher coverage resulting in more
detected junctions. The difference between tools
was again statistically significant for most
chromosomes and levels of fold-coverage (see
Supplementary File 1 for the full details of each
test). For each level of fold-coverage, the host
chromosome did not appear to influence on the
performance of most tools.

Comparison with other tools on real data

Next, isling was tested on four publicly available
datasets in which integration of either wild-type
viruses or vectors has been identified, and
compared isling against the other tools which
were suitable for each dataset. For this
comparison, we used whole genome sequencing
data and RNA-seq data from two studies that
identified wild-type hepatitis B virus (HBV)
integrations,®*** as well as amplicon datasets from
an AAV therapy for haemophilia®* and a study of a
dual-AAV gene therapy for Duchenne’s muscular
dystrophy (DMD).*®

First, we analysed whole genome sequencing
data from a study of HBV integration in patients
with  hepatocellular carcinoma (HCC; SRA
PRJEB2869).°* We downloaded reads for 13 sam-
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Figure 3. Performance of viral integration tools on AAV vector integration datasets with varying fold-coverage and
host chromosome, assessed by Jaccard statistic (A), positive predictive value (B; PPV) and true positive rate (C;
TPR). Points indicate the mean value from three replicates, and vertical lines at each point indicate the standard error
of the mean. Missing points (for Polyidus, 100X coverage) indicate that analysis could not be completed within 7 days.

ples available on the SRA, with a total of 22 vali-
dated integration junctions. This was a large data-
set, with an average of 667 million read pairs per
sample. For each validated integration junction in
this dataset, we identified the closest output integra-
tion breakpoint from each of the tools, and consid-
ered a junction to be found if the distance between
validated and nearest output breakpoint was 5 bp
or less (Figure 4(A), Supplementary tables 4 and
5). Isling identified the most validated integration
breakpoints with 18 of 22 junctions found (81%), fol-
lowed by ViFi with 14 (64%), Polyidus with 8 (36%)
and seeksv with 6 (27%) (Figure 4(A)). Since VSeq-
Toolkit is aimed at the analysis of vector data, we
did not test this tool on this dataset.

Next, we investigated an RNA-seq dataset from a
study of HBV-positive HCC cell lines, which
identified chimeric transcripts containing HBV
genomes.*® This study identified 11 integration
junctions from four cell lines. One of these junctions
was complex, involving a structural variation in the
host and appearing as virus/host (68 bp of CDHR3
exon 19)/host (TRRAP intron 7). This complex inte-
gration could be output by the tools as two separate
integration junctions, and therefore we treated this
event as two possible integration junctions (Supple-
mentary table 6), resulting in 12 junctions alto-
gether. This dataset contained an average of 67
million read pairs per sample for the four cell lines.

Of the 12 validated integration junctions from the
original study, isling identified 10 (83%), ViFi
identified 12 (100%), Polyidus identified 6 (50%)

and seeksv identified 5 (42%) (Figure 4(B)). Some
of the integrations fell within regions that were
difficult to map (because the host alignments had
low mapping qualities), and as isling subsets
integrations based on the degree of confidence in
their location, we were able to find all integration
junctions by including junctions with ambiguous
locations and increasing the distance threshold to
8 bp (Supplementary table 6). Importantly, these
changes had no effect on the results for the other
tools.

We next analysed a vector dataset from dogs with
Haemophilia A, which were treated with an AAV-
based gene therapy and followed over a number
of years (SRA PRJNA606282).>* This study recov-
ered integration sites from liver samples by nested
PCR, and validated 13 of these integration sites.
We analysed these data using isling, VSeg-
Toolkit, Polyidus and seeksv, but left out ViFi, which
processes only human data (Figure 4(C)). Isling
correctly identified 13 (100%) of these junctions,
and Polyidus identified 11 (85%). Seeksv identified
some integration sites but none of these were within
5 bp of a validated site, although two of these were
within 100 bp of a validated site (Supplementary
tables 4 and 7). VSeq-Toolkit did not output any
integration sites for this dataset.

Finally, we tested isling on a second vector
dataset from a mouse study of a dual AAV-
CRISPR therapy for Duchenne’s muscular
dystrophy (SRA PRJNA485509).°° Here, we com-
pared isling against the other tools, again leaving
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Figure 4. Performance on real datasets. A: Number of validated integration junctions from a whole genome
sequencing (WGS) dataset of human liver tissue with Hepatitis B (HBV) integrations®? identified by four integration
junction tools. B: Number of validated junctions identified by each tool in a RNA-seq data from cell lines with HBV
integrations and expressing chimeric transcripts.®® In a and b, output junctions are considered found if they are within
5 bp of a validated integration junction from the original study. C: Number of validated integration junctions found by
each tool in a dataset of an AAV-cFVIII gene therapy administered to dogs.®* D: Number of integration junctions in an
amplicon dataset of integrations of an AAV/CRISPR therapy in mice®® using a threshold of 5 bp (left) or 100 bp (right)
of an integration junction from the original study. For a, b and d, black bars indicate number of junctions identified,
grey fill indicates total number of integration junctions in the study. E: Frequency polynomial of the distances from
each output integration junction to the nearest integration junction output for an amplicon sequencing dataset of rAAV
vector integrations in various mouse tissues. Solid line indicates a distance of 5 bp, and dotted line indicates a

distance of 100 bp.

out ViFi as it does not handle non-human data. This
amplicon study used a Nextera-based library prepa-
ration method in which Tn5 transposons are first
integrated into extracted DNA, then AAV/host junc-
tion fragments are amplified using one primer that
binds in AAV and a second primer that binds in
the integrated transposon. This results in enrich-
ment of host/virus junctions, but only for junctions
in which the primer-binding part of the AAV gen-
omes are integrated. The authors identified 158
integration junctions in a total of 17 million reads,
although these were not independently validated.

Using the same 5 bp threshold as for the previous
datasets, all tools found only a small fraction of the
reported potential integration junctions; isling and
Polyidus identified one junction, while seeksv and
VSeqg-Toolkit identified none (Figure 4(D)).
Examining the distances between validated and
output junctions revealed that a majority of these
distances were less than 100 bp (Figure 4(E),
Supplementary table 8). We therefore relaxed the
threshold for all tools to 100 bp, after which isling
identified 63 (40%) junctions, Polyidus 44 (28%),
VSeq-Toolkit 40 (25%), and seeksv 2 (1%)
(Figure 4(D)).

Runtime

We next investigated the runtime (wall-clock time)
of all tools on simulated data, varying either fold-
coverage or viral load (number of integrations and
episomes) as these have the largest influence on
runtime.

First, 1000 integrations of the rAAV(OTC) vector
into human chromosome 1 were simulated, and
then reads were generated at a fold-coverage
between 0.2 and 100x (Figure 5(A)). Of the tools
tested, isling was the fastest at higher fold-coverage
(1.6 times faster than the next fastest tool, ViFi, at
100x coverage), while VSeq-Toolkit and Polyidus
were the slowest. This is due to isling’s ability to split
input reads for parallel processing, allowing the user
to take advantage of all available cores. In general,
as the fold-coverage increased, all tools had
increased runtime, since each read must be
examined to identify if it harbors an integration. Isling
was slightly slower than other tools for low coverage
conditions, likely due to the overheads from
snakemake (for example, building the directed
acyclic graph of jobs). The difference between the
median runtimes of each tool was highly significant
at each level of fold-coverage (Kruskal-Wallis tests,
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Figure 5. Effect of fold-coverage and viral load on viral integration tool runtime. A: Increase in runtime for increasing
levels of fold-coverage in simulated data consisting of 1000 integrations of an AAV vector into human chromosome 1.
B: Effect of both number of integrations (bottom axis) and number of episomal sequences (top labels) on reads
simulated after integration of an AAV vector into human chromosome 1. Points indicate the mean of nine replicates,
where each simulation (using a different random seed) was conducted three times, and runtime measured three times
on each simulated set of reads. Vertical lines at each point indicate the standard error of the mean.

p-values adjusted using the Benjamini-Hochberg
method, p = 45, df = 4, H = 21.6-42.2, p=2 x 10*
2 x 10%, see Supplementary File 1 for the full details
of each test).

Next, we investigated the effect of increasing viral
load on runtime by increasing both number of
integration junctions and number of unintegrated
episomal sequences, while keeping the fold-
coverage constant at 5x (Figure 5(B)). At higher
viral loads, isling was faster than the other tools
tested, followed by ViFi, VSeq-Toolkit, seeksv and
Polyidus. All tools had increased runtime as the
viral load increased, with a pronounced increase for
Polyidus at high numbers of episomes. The
increase in runtime was likely due to the time taken
to calculate the properties of each integration, and
for clustering integrations, but the reason for the
sharp increase for Polyidus is unclear. The
difference between the median runtimes of each
tool was also highly significant at each level of viral
load (Kruskal-Wallis tests, p-values adjusted using
the Benjamini-Hochberg method, p = 45, df = 4,
H = 336412, p = 86 x 10*9.7 x 108 see
Supplementary File 1 for the full details of each test).

Discussion

We developed isling to detect viral integration
events in a general and highly flexible way,

providing an improvement over currently published
tools. Specifically, isling can identify integration
junctions that are supported by only one read or
have ambiguous locations in the host or vector
genome, and flags integrations with vector
rearrangements, making it suitable for detecting
wild-type viral and vector integration events alike.
This will be useful for identifying differences in
integration behaviour between wild-type viruses
and vectors using the same tool. For example,
wild-type AAV is known to undergo rep-mediated
integration,®® whereas AAV vector genomes do
not contain the rep so become integrated through
a different mechanism." "’

To demonstrate the utility of isling, we compared it
against several other viral integration tools on
simulated and real-world data (pipeline for
generating datasets with the aim of assessing the
characteristic differences between wild-type viral
and vector integration scenarios.

In vector datasets, integration junctions of interest
are sometimes supported by only one read. By
detecting these low-coverage junctions, isling
supports the requirement in these kinds of data for
high sensitivity, having the highest true positive
rate and Jaccard statistic on the simulated vector
dataset, rAAV(OTC). It also identified the most
integration junctions for the real datasets (dual-
rAAV CRISPR therapy for DMD,** AAV-cFIIl.**
Tools aimed at wild-type viral integration detection
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(ViFi, Polyidus and seeksv) generally performed
poorly on these vector datasets, likely because they
identify only integration junctions supported by mul-
tiple reads. The ability to detect integration junctions
that are supported by a single read are critical for
some, but not all, vector integration datasets. For
those datasets where clonally expanded events
are primarily of interest, isling performs clustering
to combine reads originating from the same integra-
tion event. This gives users the flexibility to filtering
out single-read integration junctions when only clon-
ally expanded integration events are of interest, or
retain all single-read breakpoints if they are
required.

While the clustering of reads enable isling to cater
for the properties of different datasets, it also poses
a trade-off the user should be aware of. When
manipulating the fold-coverage of simulated reads,
we observed that isling and VSeg-Toolkit both had
a drop in positive predictive value at very high
coverage (>30X). This drop is caused by
integrations identified in discordant pairs: where
possible, isling outputs a ‘best guess’ location
based on mean fragment size, and can cluster
these with overlapping chimeric reads resulting in
a more accurate integration junction location.
However, in larger datasets, discordant pairs in
fragment sizes divergent from the mean are more
common, but for these integrations the ‘best
guess’ coordinates may not overlap with chimeric
reads from the same junction. These therefore
can be scored as false positives, despite
originating from true integrations. When clustering,
there is a trade-off between running the risk of
combining independent integration events that are
close to one another, and failing to combine reads
originating from the same integration event. Isling
is relatively conservative in this regard, aiming to
avoid false clustering by combing either events
that overlap, or have exactly the same genomic
coordinates (two options that the user can decide
between). However, this conservatism can have
the downside of failing to combine discordant
pairs in some cases. Isling indicates the types of
reads for each integration junction, so if
integrations with clearly defined locations are of
interest, the user may ignore any integrations
resulting only from discordant pairs in downstream
analysis.

Another issue that was apparent, particularly in
the RNA-seq HBV integration dataset®® was the
challenge presented by integration junctions pre-
sent in reads with low mapping qualities or multiple
equivalent alignments. These are correctly identi-
fied as integrations by isling, but cannot be uniquely
localised in the host and/or viral genome. For exam-
ple, isling correctly identified all integrations in the
RNA-seq HBV integration dataset, but some of
these mapped with low mapping qualities and were
therefore not in the ‘unambiguous’ subset of the
data. While the strategy of using single reads to
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identify integration junctions is required for vector
datasets and therefore necessary for an
application-agnostic tool, one of the disadvantages
of this approach is that reads that map to either host
or vector with low mapping quality or in an ambigu-
ous manner cannot be localised. Other aP;)roaches,
such as VERSE'® and VIRUSbreakend,'” use loca-
lised assembly at putative integration junctions to
solve this issue, creating a longer contig which is
more likely to be mapped unambiguously. However,
such approaches are unsuited for vector data reads
spanning the host/vector junction may be few. Yet
other tools, such as ViFi and Polyidus, attempt to
remove ambiguity from results by removing reads
with low mapping qualities or from regions of the
genome that have low mappability. However, in
vector data, all putative integrations are of interest,
even those with ambiguous locations. Therefore,
isling takes the approach of flagging all possible
ambiguity in integration junction locations, in a sim-
ilar manner to the retroviral-specific pipeline
INSPIIRED.?" The user can then decide which of
the classes of output integrations are of interest.

Finally, isling is configurable to various kinds of
analyses. For example, it does not impose
restrictions on the host or vector reference that
can be used, and these references can be
supplied in FASTA format or as a pre-built bwa
mem index. Isling also provides a flexible interface
for filtering integrations, which allows the user to
easily subset integrations of interest based on
their properties. Developed using snakemake,*® isl-
ing can automatically supply dependencies using
either conda or singularity,” or alternatively can
be run in a pre-built docker*’ container. Isling is also
fast, due to the combination of parallelization pro-
vided by snakemake, and the ‘split parameter
which divides the workload for input files into smal-
ler chunks. Another benefit of snakemake is ease of
deployment and parallelization of isling in a range of
environments, including locally, in  high-
performance computing environments, and in the
cloud.

Materials and Methods

Terminology

We use the following terms to refer to integrations
of a viral genome into a host genome. An integration
eventoccurs when a viral genome, whole or in part,
is integrated into a host genome. The infegration
site refers to the place in the host genome at
which integration occurs, and at each integration
site there are two integration junctions, which refer
to the breakpoints created between host and viral
genomes by the integration event. An integration
junction is specified by the host and viral
coordinates at the breakpoint between host and
virus. If there is a deletion from the host genome
during the integration event, the integration site
may not be a single location. We use the term
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chimeric read to indicate a single read which
contains portions that originate from more than
one reference (for example, part host and part
virus), and discordant pair to indicate a pair of
reads in which one read originates from the host
and the other to the virus.

Integration junction detection

We developed isling, a pipeline for viral
integration detection from paired-end next
generation sequencing (NGS) data. Isling’s overall
goal is to detect integration events using host and
viral alignments. It does this by identifying
chimeric reads, consisting of either one host/virus
breakpoint that falls within a single read, or a short
integration event where a read harbors both host/
virus junctions from a single integration event. It
also identifies integrations which originate from
discordant pairs, in which an integration
breakpoint falls between the two reads of a pair.
Isling was developed using snakemake,*® which
allows the parallelization of jobs, the automated
deployment of dependencies using singularity or
conda, and the ability to run locally, on a cluster or
in the cloud. Isling is also available as a Docker
image at Docker Hub (https://hub.docker.com/r/
szsctt/isling).

Isling has four main steps: read pre-processing,
alignment, integration identification, and post-
processing (Figure 1). In the pre-processing step,
reads may be de-duplicated, trimmed of adapters.
Overlapping read-pairs may be merged at this
stage. The de-duplication step uses Clumpify from
the BBTools package,”' and merging and trimming
are performed by SeqPrep.*? All are optional. In the
alignment step, reads are first aligned to a viral ref-
erence, and then reads of interest are extracted
using SAMtools.”®> For potential chimeric reads,
the reads of interest all mapped reads. For potential
discordant pairs, reads of interate are all paired
reads with at least one read in the pair mapped.
Extracted reads are then aligned to a host refer-
ence. Conducting alignments in this order typically
reduces the computational requirements due to
the smaller genome size of the virus(es) compared
to the host, and the smaller number of reads origi-
nating from the virus compared to the host. Align-
ments are conducted using bwa mem.**

Next, integrations are detected using the host and
viral alignments by identifying chimeric reads and
discordant pairs. Chimeric reads may contain
‘ambiguous bases’, which either map to both host
and viral genomes (an overlap), or are unmapped
in both (a gap). Each chimeric read is assigned an
‘edit distance’, which is the sum of base pairs that
differ from the host and viral genomes to which
the chimeric read maps (the Levenshtein distance
reported by bwa mem), as well as the number of
unmapped bases. Since the edit distance is
intended to enumerate bases in the read that are
unaccounted for, we do not include overlapped
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bases (mapped to both host and virus) in this
metric.

For each putative integration, isling checks if they
are likely ‘rearrangements’ of the host or viral
genome (Figure 1). These rearrangements are
identified by evaluating how much of the read is
covered by additional alignments, i.e. alignments
to the appropriate genome with a lower score than
the primary alignment (that is, supplementary and
secondary alignments from bwa mem). To decide
if a read could be a rearrangement, we compare a
‘rearrangement edit distance’ with the ‘integration
edit distance’ described above. The
rearrangement edit distance is calculated in the
same way as for integration edit distance, except
that the primary, secondary and supplementary
alignments from a single reference are used. If
there are multiple alignments that cover the same
part of the read, only the longest of these
overlapping alignments are retained for the edit
distance calculation. Reads are indicated to be a
rearrangement, rather than an integration junction,
if the rearrangement edit distance is smaller than
the integration edit distance.

In some cases, one or more secondary alignments
are equivalent to the primary alignment in either host
or vector, in that they cover the same part of the read.
In this case the integration junction cannot be
uniquely localised in the reference genome and is
considered to have multiple possible locations (an
‘ambiguous location’). To identify all possible
junction locations, each primary, secondary and
supplementary alignment from the host and viral
reference are considered, and if they constitute a
valid integration all possible locations are output.
For each alternate location we again compute an
edit distance (calculated for integrations as
explained above); if this is not similar (within a user-
defined threshold) to the edit distance for the
primary integration, it is discarded. Additionally, an
integration junction is considered to have an
ambiguous location if the host or viral alignments
have a low mapping quality (below a user-defined
threshold).

After detection, integration junctions can be
filtered according to user-defined criteria (such as
total edit distance, number of ambiguous bases,
and vector rearrangement status). After filtering,
the remaining integration junctions are then sorted
into four categories, based on the ambiguity of the
junction location. Each junction has a location in
host and viral genomes that are either uniquely
localised or not, as outlined above. Integration
junctions are categorised into four groups:
unambiguous location in both host and virus or
vector, ambiguous location in host genome,
ambiguous location in virus or vector genome, and
ambiguous locations in both host and virus or
vector genome.

Lastly, redundancy that occurs when multiple
reads originate from the same integration event is
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Table 1 Parameters used for AAV2 and rAAV(OTC) integration simulation

Parameter AAV2 integrations  OTC vector Description
integrations
host GRCh38 chr1 GRCh38 chr1 Host sequence into which viral fragments are integrated
virus AAV2 (Genbank OTC vector Viral sequence to be integrated
NC_001401.2)

int_num 1000 1000 Number of integration events

epi_num 1000 100 Number of episomes (non-integrated viral genomes)

p(delete) 0.1 0 Probability of an integrated virus harbouring a
deletion of a randomly chosen fragment

p(rearrange) 0.1 0 Probability of an integrated virus being rearranged by the creation of a
breakpoint, and swapping the two fragments either side of that
breakpoint

fcov 15 5 The fold-coverage of the simulated reads

removed by clustering integration junctions based
on both host and vector genome coordinates.
During clustering, a balance must be struck
between correctly combining reads from the same
integration event (due to clonal expansion), and
avoiding clustering reads from independent
integration events that occur close to each other.
There are therefore two options for clustering
integration junctions available in isling. In ‘overlap’
clustering, two or more integration junctions are
combined if their coordinates overlap in both host
and virus or vector genome. The output
coordinates reflect the coordinates that are
common to all combined integrations, which has
the effect of combining ‘best guess’ coordinates
from a discordant pair with more precise
coordinates from a chimeric read. In ‘exact’
clustering, two or more integration junctions are
combined if their coordinates are the same in both
host and virus or vector genome. This option may
be useful for vector datasets where clonality is
expected to be low and therefore combining
overlapping integration junctions may result in
combining distinct integration events. These two
clustering methods are illustrated in Fi%ure 1.
Isling also produces an Rmarkdown*® html report
containing a general summary of the detected inte-
gration junctions, including an overview of the
parameters used, the number of detected junctions
and their location in the host and viral genomes.*°

Comparing viral integration tool performance:
simulated data

To benchmark the performance of isling against
other tools, viral integration events were simulated
by inserting a viral sequence into randomly
chosen positions in the host sequence, yielding a
uniform distribution of integration events. Two
tested scenarios simulate either wild-type AAV2
(GenBank NC_001401.2) or recombinant AAV
vector integrations into human (GRCh38)
chromosome 1. The AAV vector reference used
was a pre-clinical recombinant AAV vector
cassette encoding human Ornithine

11

Transcarbamylase, henceforth referred to as rAAV
(OTC) vector.®' This vector contains homology with
the OTC locus on chrX, and the SERPINA1 locus
on chr14, due to the presence of an OTC enhancer
element and the SERPINA1 promoter.

During simulation, we aimed to reproduce
previously described elements of AAV integration
behaviour (Table 1; supplementary table 1), which
include the propensity for sub-genomic fragments
of wild-type and vectorized AAV genomes to be
integrated, rather than the whole genome.” The
propensity for AAV vector genomes to have struc-
tural variation introduced during vector production
was also simulated by including a probability of rear-
rangement and deletion for each integrated viral
fragment. The possibility of deletions from the host
chromosome at the integration junction®” was
included in the form of a probability of this occurring
at each integration junction. To mimic the fact that
most AAV or vector genomes are not integrated
but are present as episomes,’’ additional virus or
vector sequences were included in the output
FASTA used for read simulation. Table 1 shows
the choices made for simulation parameters. Three
replicates (n = 3) were performed for each condi-
tion, each with a different random seed.

Next, reads were simulated from the respective
integration scenarios outlined above using
art_illumina.*” For vector integration, a lower cover-
age was used to reflect the distributed, heteroge-
nous nature of vector integration, whereas for
wild-type integrations a higher fold-coverage was
used to mimic clonal expansion of integrations.
After simulation, reads that cross each integration
junction were annotated. Integration junctions with-
out any associated reads, which can occur if the
fold-coverage is low, were discarded.

The performance of isling was compared against
seeksv,’® Polyidus,® ViFi'® and VSeg-Toolkit.?” In
order to run these tools, dependencies and code
were included in Docker*® images and run with Sin-
gularity.*® Dockerfiles for these containers are avail-
able at GitHub*® and Docker images can be
downloaded from Docker Hub.**>* We also tested
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GENE-IS,?® BATVI,*®> HGT-ID** and Virus-Clip,>®
which did not run successfully in our hands.

The host genome locations of the integration
junctions identified by these tools were compared
against the locations of the simulated integrations
using BEDtools ‘closest’.”® We calculated the dis-
tance between each simulated integration junction
and the nearest output integration junction from
the tested tools, as well as the distance between
each output integration breakpoint and the nearest
simulated junction. The start and stop coordinates
of the simulated integrations were the coordinates
of the ambiguous bases (gap or overlap) at each
junction, and accounted for deletions from the host,
which result in a displacement of the right junction
coordinates from the left junction in the host gen-
ome, where necessary. For tools that only output
a single coordinate for integration junction location,
this location was used for the start coordinate, and
one base added to this value for the stop
coordinate.

To calculate the positive predictive value and true
positive rate, integrations were classified into three
categories: frue positives, which are simulated
integrations that are close to an output integration;
false negatives, which are simulated integrations
that are far from an output integration; and false
positives, which are output integrations that are far
from a simulated integration. Typically, the
threshold used for distinguishing true positives
from false positives and false negatives was 5 bp.
We did not enumerate true negatives, since these
would be all positions in the host reference at
which an integration was not simulated or lacking
an output integration junction. These true
negatives would greatly outnumber the other
classes and would skew the calculated metrics.
The positive predictive value (PPV) and true
positive rate (TPR) were calculated using the
below equations:

ppy— P
o+ 1fp

__1p
TPR =

Additionally, the Jaccard statistic was used to
compare simulated integration locations in the
host genome with the output of each tool. To
calculate this metric, output files from each tool
were converted to bed format and compared
against the simulated junctions using BEDtools
‘jaccard’.”® The Jaccard statistic calculates the rela-
tive difference between the intersection and union
without the intersection (symmetric difference) of
two given sets of genomic regions.®’ For isling, we
compared only the output integrations that had
unambiguous locations in the host genome (com-
bining both the sets of integrations that had unam-
biguous locations in both references with those
that had unambiguous locations only in the host
genome). For VSeg-Toolkit, we similarly used for
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analysis those integration junctions that were
unique for analysis.

Comparing viral integration tool performance:
published datasets

SRA datasets PRJEB2869, PRJNA298941,
PRJNA485509 and PRJNA606282  were
downloaded using the SRA toolkit,”® or directly from
the European Nucleotide Archive. Viral integration
tools were run and compared as outlined above,
and their outputs converted to BED file format.
The output integration locations were compared
against the published integration site locations for
each tool using BEDtools ‘closest’ as outlined
above.

Comparing viral integration tool performance:
runtime

To compare runtime, Docker images containing
each tool, including isling, were converted to the
Singularity ‘sif’ format. All tools were run using
these Singularity images on a Dell PowerEdge
M630. Each run was given access to 20 cores,
128 Gb of memory and a maximum wall time of
24 hours, and was repeated three times on each
input pair of FASTQ files. Elapsed time was
measured with GNU time.

Figure preparation and statistics

Data were analysed using R (version 4.1.1),°°
including the tidyverse (1.3.1),°° cowplot (1.1.1)°"
and rstatix (0.7.0)°? packages. Supplementary File
1 was additionally created using the knitr (1.35)%°
and rmarkdown (2.11)°* packages.

Data Availability

Code for simulation and analysis available on
GitHub at https://github.com/aehrc/isling, and at
the CISRO data access portal (https://doi.org/10.
25919/gmpm-w041).
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