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Abstract: Emerging virus diseases present a global threat to public health. To detect viral pathogens
in time-critical scenarios, accurate and fast diagnostic assays are required. Such assays can now be
established using mass spectrometry-based targeted proteomics, by which viral proteins can be rapidly
detected from complex samples down to the strain-level with high sensitivity and reproducibility.
Developing such targeted assays involves tedious steps of peptide candidate selection, peptide
synthesis, and assay optimization. Peptide selection requires extensive preprocessing by comparing
candidate peptides against a large search space of background proteins. Here we present Purple
(Picking unique relevant peptides for viral experiments), a software tool for selecting target-specific
peptide candidates directly from given proteome sequence data. It comes with an intuitive graphical
user interface, various parameter options and a threshold-based filtering strategy for homologous
sequences. Purple enables peptide candidate selection across various taxonomic levels and filtering
against backgrounds of varying complexity. Its functionality is demonstrated using data from different
virus species and strains. Our software enables to build taxon-specific targeted assays and paves the
way to time-efficient and robust viral diagnostics using targeted proteomics.

Keywords: virus proteomics; mass spectrometry; virus diagnostics; data analysis; targeted proteomics;
peptide selection; parallel reaction monitoring

1. Introduction

Virus infections present serious health threats to millions of individuals worldwide. For public
health, the accurate detection of pathogenic viruses is time-critical because reducing the time for
diagnosis and treatment lowers the risk of disease transmission and patient mortality. Fast and robust
diagnostic assays are therefore required to rapidly detect re-emerging and newly emerging viruses
(e.g., Influenza, Ebola, Zika, or Hepatitis C virus). These diagnostic methods need to cover a broad
spectrum of potentially disease-causing viral agents.

Classical diagnostic strategies for detecting viral infection can be divided into two different
categories: on the one hand, virus detection can be established by targeted methods, such as
agent-specific polymerase chain reaction (PCR) or immunological techniques. On the other hand,
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detection approaches exist that provide an open view, such as electron microscopy or next-generation
sequencing (NGS). Besides their unbiased view, the latter methods have the advantage of identifying
multiple pathogens in a single experimental run. Due to its specificity (hybridization and sequencing)
and sensitivity (qPCR), the detection of nucleic acids is the gold standard in diagnostics. Conversely,
the detection of viral proteins is used less frequently in diagnostic settings and is usually based on
interaction with affine binding molecules such as antibodies or aptamers. However, producing these
binding molecules is generally time-consuming and laborious, as is the validation of their specificity.

While in clinical microbiology the analysis of subproteomes (<12 kDa) using matrix assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a standard
method for the identification of bacteria and fungi, no comparable proteomic approach exists in
virology for technical reasons [1]. In recent years, MS-based targeted proteomics has evolved into
a technique for detecting proteins in complex samples with high sensitivity, quantitative accuracy,
and reproducibility [2,3]. Targeted proteomics is commonly used to test hypotheses on a subset of
proteins of interest, in contrast to discovery shotgun proteomics. The latter provides global proteome
profiling of thousands of proteins in a sample, however, at the expense of sensitivity and reproducibility.
Unlike discovery methods, targeted methods of selected/multiple reaction monitoring (SRM/MRM) [4]
and parallel reaction monitoring (PRM) [5] nowadays allow for detecting and analyzing preselected
proteins and peptides in sensitive, specific, and time-efficient manner. Furthermore, the development
of targeted proteomics assays has become easier in the past few years, owing to the advances of
analytical methods, instrumental capabilities, and computational workflows [6].

Targeted MS-based proteomics assay development typically involves (i) peptide candidate
selection, (ii) peptide synthesis, and (iii) assay optimization. This procedure now enables the transfer of
a process highly similar to the design of multiplex PCRs to the proteome level for detecting pathogens.
While MS-based targeted assays have not been used for detecting viruses in any diagnostic setting yet,
promising findings could already be achieved for identifying and quantifying pathogenic bacterial
species. For example, targeted proteomics methods were successfully used in previous studies on
Streptococcus pyogenes [7] and Mycobacterium tuberculosis [8].

Although targeted proteomics has gained much popularity with many use cases in experimental
research by now, relatively few research-oriented algorithms and software tools have been developed
that support the user-defined selection of peptides for designing targeted SRM or PRM assays. In
this context, Skyline [9] is a powerful and widely used software for designing targeted proteomics
assays. Besides its wide applicability to different targeted methods and its intuitive use, it also has
some internal limitations: first, Skyline is dependent on the operating system Windows, and can
therefore not be used under a Linux cluster server environment, and second, it does perform only exact
string matching during the peptide selection process without considering any homologies between
related organisms. PeptidePicker [10] is a web-based workflow to select peptides by providing,
amongst further options, the protein accession number and was designed for human and mouse
proteomes. PeptideManager [11] is a tool developed to select peptide candidates as protein surrogates
from a defined proteome. It was optimized for the use case of xenografts, i.e., human tumors
orthotopically implanted into a different species. While this software allows for constructing a peptide
database from any species-specific proteome, sequence homologies, and multiple taxonomic levels are
disregarded. Picky [12]—a web-based method designer for targeted assays—only provides support
for human and mouse sequences, while it relies on synthetic peptide data from the human-focused
ProteomeTools project [13,14]. In the context of targeted metaproteomics, the Unique Peptide Finder
of the UniPept web application [15] was developed to select unique peptides for user-defined taxa.
Furthermore, various computational tools have been developed to predict proteotypic peptides for
targeted proteomics experiments [16–18]. These methods often make use of machine learning training
setups that incorporate the probability of observing a peptide in a standard proteomics analysis,
referred to as peptide detectability [19] or observability [20], and commonly involve physicochemical
properties of the proteins to select high-responding peptides [21]. To our best knowledge, however,
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no software tool is currently available to select taxon-specific peptides for targeted proteomics assays
that also accounts for sequence homologies between different species or strain proteomes. Effectively
considering homologies is crucial for accurate taxon-specific diagnostics, because proteins measured
in virus samples frequently have a high sequence similarity either in closely related strains or due to
highly conserved functional domains.

Here we present Purple (Picking unique relevant peptides for viral experiments),
a platform-independent software that returns a set of taxon-specific peptides, after the user has
specified the viral target (i.e., a particular virus species or genus), as candidates for targeted proteomics
experiments. Equipped with a user-friendly graphical user interface and a threshold-based filtering
strategy for homologous sequences, it simplifies the design of MS-based targeted proteomics assays
for the end user. Purple enables peptide candidate selection and considers background sequence
information, i.e., proteins that are not related to a specific virus target, at various taxonomic levels.
Thus, all peptide candidates are validated against a user-defined database of virus proteomes. While
the design of MS-based targeted assays requires further steps, our software greatly facilitates the
cumbersome, yet important task of peptide selection and thereby paves the way to time-efficient
and robust pathogen screening and viral diagnostics. Purple is open source software available at
https://gitlab.com/rki_bioinformatics/Purple.

2. Materials and Methods

2.1. Purple Workflow

Purple is implemented in Python (version 3.6) and makes use of additional Python libraries such
as tqdm (https://github.com/tqdm/tqdm) for process bar calculation and Biopython [22] to calculate the
molecular weight of peptides. Purple is available as portable standalone version that already includes
all required libraries or Purple can be installed using pip or conda, which are managing dependencies.
The workflow of Purple is depicted in an overview diagram (Figure 1). Purple requires the input of
protein sequence databases and a configuration file. The databases are automatically rearranged into
a target and a background database. The “exact matching” step is used to remove exact sequence
matches with the background from the target peptide set. The remaining target peptides are used to
detect and remove homologous peptides. A result file containing the final unique peptides is created
together with various intermediate result files. These are outputs of all Purple processing tasks, namely
(i) digested peptides, (ii) exact matching peptides, (iii) non-homologous matching peptides and (iv)
background shared peptides.

https://gitlab.com/rki_bioinformatics/Purple
https://github.com/tqdm/tqdm
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Figure 1. Overview of the Purple workflow. A configuration file and a directory path to the location 
of FASTA databases serve as input (blue). In the database preprocessing step, the databases are 
separated into target and background (orange). Any target peptides exactly matching to the 
background database are removed. In the homologous matching step, any target peptides that have 
similar sequences are filtered out (orange). All intermediate and final results are exported 
automatically to a user-defined output folder (green). 

2.1.1. Preprocessing (Target Selection) 

The selection of a target virus proteome is handled by input and preprocessing routines in 
Purple. For target selection, protein sequence databases in FASTA format serve as main input and 
are required to be provided in UniProt format. To select the database input, a directory needs to be 
specified by the user and multiple FASTA files can be considered for the processing. Two options of 
database specification are available in Purple: the first option is to explicitly define target species 
names as a list, which leads to the merging of all provided input databases. Each protein entry that 
contains one of the defined target species names in the protein header is considered as a target 
protein. The protein sequences not matching the defined target species are used as background 
database. The second option is to select a specific FASTA file in the database directory as target 
database. All remaining databases in the directory are then automatically merged to a single 
background database. As the background database may still consist of proteins originating from one 
of the target species, each protein in the background database is checked once more: if a protein 
header matches any species in the specified target database file, the protein entry is removed from 
further processing accordingly. 

Both options result in two types of databases, namely a target and a background database. In 
the following, each protein sequence in these databases is in silico-digested using the enzymatic rule 
of trypsin with optional proline digestion. The in silico digest step results in multiple peptides for 

Figure 1. Overview of the Purple workflow. A configuration file and a directory path to the location of
FASTA databases serve as input (blue). In the database preprocessing step, the databases are separated
into target and background (orange). Any target peptides exactly matching to the background database
are removed. In the homologous matching step, any target peptides that have similar sequences are
filtered out (orange). All intermediate and final results are exported automatically to a user-defined
output folder (green).

2.1.1. Preprocessing (Target Selection)

The selection of a target virus proteome is handled by input and preprocessing routines in Purple.
For target selection, protein sequence databases in FASTA format serve as main input and are required
to be provided in UniProt format. To select the database input, a directory needs to be specified by
the user and multiple FASTA files can be considered for the processing. Two options of database
specification are available in Purple: the first option is to explicitly define target species names as a list,
which leads to the merging of all provided input databases. Each protein entry that contains one of
the defined target species names in the protein header is considered as a target protein. The protein
sequences not matching the defined target species are used as background database. The second option
is to select a specific FASTA file in the database directory as target database. All remaining databases
in the directory are then automatically merged to a single background database. As the background
database may still consist of proteins originating from one of the target species, each protein in the
background database is checked once more: if a protein header matches any species in the specified
target database file, the protein entry is removed from further processing accordingly.

Both options result in two types of databases, namely a target and a background database. In the
following, each protein sequence in these databases is in silico-digested using the enzymatic rule of
trypsin with optional proline digestion. The in silico digest step results in multiple peptides for each
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protein entry, and peptide sequences beyond the user-defined length boundaries are filtered out. In
addition, preprocessing includes the option of removing protein fragments and also allows replacing
each isoleucine by leucine: this option was implemented because these amino acids share identical
molecular masses and are therefore commonly not distinguishable in mass spectrometry. When the
preprocessing is completed, both a target and a background database are provided for further analysis,
which in this stage consist of peptides instead of proteins.

2.1.2. Exact Matching

Exact matching presents the first actual processing step in Purple: here, each of the previously in
silico-digested target peptides is compared against the provided background database (see previous
paragraph). In this procedure, target and background peptides of identical length are compared and
only those target peptides that are not contained in the background are considered further; thus,
peptide sequences with one or more exact sequence matches in the background database are filtered out
at this stage, because they are not unique to the user-defined taxa of the target space. This procedure is
performed iteratively until all in silico-digested peptides have been evaluated. The remaining peptides
that have not been filtered out are stored as unique peptide candidates for further processing and are
exported as intermediate result of the exact matching step.

2.1.3. Homologous Matching

Homologous matching is performed subsequently to the exact matching step. The goal is
to evaluate each of the unique peptide candidates concerning its potential sequence consensus to
homologous proteins in the background. The rationale behind this approach is that the more similar a
target peptide is to the background, the less appropriate it is as candidate for a taxon-specific targeted
assay. To assess the similarity of each peptide to the background proteomes, a sequence background
consensus metric is introduced (see next paragraph). The target peptides that are discarded either
during the exact or the homologous matching step are exported as so-called “shared” peptides. Shared
peptides have either an exact sequence match with the background or have background consensus
value above a user-defined threshold. To keep track of all processed data, target peptides with a
background consensus below the threshold are exported as well.

2.1.4. Background Consensus Metric and Threshold Generation

Owing to mutational effects on conserved viral proteins, peptides can often be shared within a
virus genus or family with minor sequence variations between them. This is problematic for targeted
assays because such peptide candidates are not specific for species- or strain-level identification. To
remove such taxon-unspecific peptides from the final sequence set, the background consensus metric
f (A, B) is used in Purple as the essential part of the homologous matching. Basically, the background
consensus presents the Hamming distance of a target peptide A and background peptide B of the same
length in relation to the length of the peptide n (Equation (2)). An amino acid is shared if the same
amino acid (d(x, y)) is at the same position in A and B (Equation (1)).

d(x, y) =
{

1, i f x = y
0, i f x , y

(1)

In other words, the background consensus is the sum of shared amino acids at a specific position i
divided by the number of amino acids in both (target and background) peptides. Even though the
Hamming distance is a simple metric, it provides a proof-of-concept and validation of Purple, as
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adding more sophisticated methods should only slightly improve the homologous matching while
increasing the computational effort and complexity.

For A = {a1, a2, . . . , an} and B = A = {b1, b2, . . . , bn} and n = |A| = |B| :

f (A, B) =
∑n

i=1 d(ai,bi)

n , f or ai ∈ A and bi ∈ B
(2)

This metric is applied to each of the target peptides that are compared to all background peptides
of the same length. For each target peptide, the maximum consensus is stored when being below a
user-defined background consensus threshold. A target peptide with a high background consensus is
likely to originate from a homologous protein or common protein domain. Therefore, the consensus
metric evaluates the conservation of peptides in the target and background database. A low background
consensus marks target peptides that are unique in sequence in the target species. All peptides with a
high background consensus below the previously chosen threshold are exported into the final results
file and the remaining shared peptides are exported as part of the intermediate output. The results
are supplemented with the peptide weight, the number of occurrences in the target database, as well
as species and proteins names. This enables the user to conduct further analysis with the previously
retrieved unique peptides. The Purple documentation is available for a complete description of all
output files and more details about the data interpretation.

2.2. Graphical User Interface

A graphical user interface (GUI) was developed for using Purple (Figure 2). This interface allows
researchers with less expertise in handling bioinformatics methods on the command line to use Purple
in a efficient and user-friendly manner. The Purple GUI makes software configuration and execution
straightforward and complex tasks can be rapidly accomplished. Any parameter can be adjusted in
the GUI, and the background consensus threshold can be set by the user. Furthermore, the processing
status can be inspected in a logging panel and a file menu provides options for saving and loading
configuration files. Note that configuration files are optional in Purple and a default configuration
is provided; thus, only system-specific parameters must be set in the GUI. Using configuration files
makes each task reproducible and the GUI-integrated configuration file choice allows for switching
between multiple settings easily. Figure 3 shows the final output in the tab separated values (TSV)
format that can be further processed and visualized using common spreadsheet software.
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Figure 2. The graphical user interface of Purple. In the top file menu, configurations files can be loaded
and saved. The top menu also includes a link to the documentation and manual. The listed GitLab page
provides direct user support from the developers via an issue tracking system. The upper panel shows
default parameters and allows modifying the configuration settings and processing start. The lower
panel displays the current processing status with logging information on the current run, configuration,
and progress of the analysis.
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Figure 3. Graphical representation of the Purple output. The tabular TSV output of Purple can be
imported into various spreadsheet software tools. This exemplary table shows the peptide sequence, the
calculated theoretical mass weight (Da), the highest background consensus, and the number of peptide
occurrences in the target proteome. The species, protein name and full description of the associated
protein are stored in a list for further analysis. In addition, the number of proteins and FASTA entries
are listed separately, because they can diverge, e.g., when a protein has multiple sequence variants.

2.3. Data

2.3.1. Target Virus Databases

To evaluate the performance of Purple, selected target virus species from sequence databases
were used. This section provides an overview on the virus species used with respect to database
composition and further background information on the virus type. The virus species were selected
based on their relevance for current or upcoming diagnostic settings.

Arenaviruses

Arenaviruses are enveloped RNA viruses with an average diameter of 120 nanometers that
have a bisegmented negative-strand RNA genome. The Latin term “arena” refers to the grainy
ribosomal particles acquired from the virus-host cells that can be viewed in cross-section with electron
microscopy imaging. Arenaviridae is a virus family whose members are generally associated with
causing chronic infections in rodents and zoonotically acquired severe diseases, such as lymphocytic
choriomeningitis or hemorrhagic fever, in humans. In this work, nine disease-causing Old and New
World arenavirus species are taken as targets for evaluating the performance of Purple (Table 1). Besides
Lymphocytic choriomeningitis virus, strain members of which cause aseptic meningitis, encephalitis,
or meningoencephalitis, all listed arenaviruses are causative agents for viral hemorrhagic fever (VHF).
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Table 1. Alphabetically ordered list of arenavirus species used for the performance benchmarking. The
reader is referred to [23] for further details on these arenaviruses.

Virus Species Abbreviation NW/OW 2 NW - Clade 3 No. Proteins No. Peptides 1

Chapare mammarenavirus CHAV NW B 4 252
Guanarito

mammarenavirus GTOV NW B 4 244

Junin mammarenavirus JUNV NW B 4 246
Lassa virus LASV OW - 4 242

Lujo mammarenavirus LUJV OW 4 - 4 250
Lymphocytic

choriomeningitis virus LCMV OW - 4 245

Machupo virus MACV NW B 4 237
Sabia mammarenavirus SABV NW B 4 248

Whitewater Arroyo
mammarenavirus WWAV NW A/rec 4 240

1 Number of in silico-digested peptide sequences, 2 New World (NW)/ Old World (OW), 3 New World clade 4 Based
on genome sequence clustering, Lujo mammaarenavirus shows its own cluster [23].

Cowpox virus

Cowpox virus (CPXV) is a large double-stranded DNA virus with a proteome of over
200 proteins [24] that belongs to the genus Orthopoxvirus (OPV) of the Poxviridae family. CPXV has
been described as the source of the first vaccine used by Edward Jenner, who was the first to scientifically
describe the vaccination process against the smallpox-causing variola virus. Recent findings based on
a conducted analysis on the smallpox vaccine gave evidence of the suspected role of horsepox (instead
of cowpox) in the origin of the vaccine [25,26]. Since the pathogenicity and zoonotic potential of CPXV
are investigated at the Robert Koch Institute, detailed data acquired from MS measurements were
available (see Section 2.3.3). For performance evaluations, CPXV is further beneficial because this virus
species has several close relatives. In addition to the cowpox strains Brighton Red and Grishak-90, four
very close relatives with high sequence similarity are given: a genome comparison performed with
BLAST [27] showed that variola virus, monkeypox virus, horsepox virus, and vaccinia virus share
sequence identities of up to 98% (Supplementary Table S1).

Vaccinia virus (VACV Copenhagen and VACV Western Reserve)

Vaccinia virus is a member of the Orthopoxvirus (OPV) genus [28] and has been used for
vaccination against smallpox since the 19th century. Due to the high sequence similarity of members of
the OPV genus, it is possible to provide cross-protection vaccination by one member of the OPV genus.
Hence, the classification can be an issue, because it can be challenging to find peptides to reliably
classify a species or a strain. In this work, we investigate whether it is possible to distinguish between
the two strains VACV Copenhagen and VACV Western Reserve by finding strain-specific peptides
using Purple. Similar to CPXV, experimental data was publically available (see Section 2.3.3).

2.3.2. Background Virus Databases

The target databases mentioned above are species-specific and therefore cannot represent all
available virus proteomes. From the target databases, Purple only yields to species-specific unique
peptides. To extend this space to all virus proteomes and subsequently be able to find unique
peptides in that relation, we added a database that consists of all reviewed virus proteins available
on UniProt/Swiss-Prot [29]. In contrast to the target databases, this database is used exclusively as
a background database. At the time of writing, UniProt/Swiss-Prot contains 16,846 reviewed viral
proteins, which results in 301,387 in silico-digested tryptic peptides. In this work, we evaluate Purple
with and without the use of the larger background database.
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2.3.3. Background Human Databases

To account for samples mixed with human proteins we added a human database to the background.
This database originates from UniProt/Swiss-Prot [29] and enables Purple to discard human peptides.
Subsequently, this reduces false positives in experiments using virus-infected human samples. The
database consists of 20,428 proteins and was used exclusively for the CPXV analysis in this work.

2.3.4. Experimental Data

The MS/MS datasets used for the benchmarking of Purple originate from a previous study
published by Doellinger et al. in 2015 [24] (PRIDE project accession: PXD003013). In this work, a subset
of the data available was used including three CPXV Brighton Red, three VACV Copenhagen, and
three VACV Western Reserve MS/MS raw files. These raw files were acquired by an LTQ Orbitrap in
data-dependent manner. Further experimental details are listed and described in the above-mentioned
publication. Subsequently, three CPXV Brighton Red raw files were converted into MGF files using
the MSConvert function of ProteoWizard [30] with the peak picking parameter of MS-level two and
with zero sampling removal activated. Table 2 shows the number of MS/MS spectra for each virus
strain (CPXV Brighton Red, VACV Copenhagen and VACV Western Reserve). For peptide and protein
identification, these spectra were searched against proteome databases using the MS-GF+ [31] (version
v20181015) database search engine. The database search was performed with eight threads, an activated
decoy search, a chosen precursor with mass tolerance of five ppm, optimized for Orbitrap instruments,
and trypsin was selected as digestion enzyme. The sequence databases used for protein identification
are described in detail in Section 2.3.1. The database searches produced mzid output files that were
converted into TSV files using the build-in MS-GF+ conversion tool. Afterwards, the results were
filtered by applying a 1% false discovery rate (FDR) threshold at the PSM-level.

Table 2. This table shows the number of spectra from each sample replicate for CPXV Brighton Red,
VACV Copenhagen, and VACV Western Reserve virus species/strains.

Species/Strain No. Spectra in
Replicate 1

No. Spectra in
Replicate 2

No. Spectra in
Replicate 3

No. Total
Spectra

CPXV Brighton Red 19,396 19,352 18,920 57,668
VACV Copenhagen 19,740 19,265 19,170 58,175

VACV Western Reserve 19,421 19,453 19,076 57,950

3. Results

We here present three different use cases to illustrate the possibilities of targeted proteomics
using Purple in viral diagnostic settings. The first analysis focuses on the species-level resolution
for arenaviruses, the second evaluates the taxonomic classification using cowpox data from shotgun
proteomics measurements, and the third tests the capabilities of strain-level differentiation using
experimental data from two closely related vaccinia virus strains.

3.1. Analysis of Species-Level Resolution using Nine Arenavirus Species

In the first analysis, we aimed to evaluate the species-level resolution of our diagnostic approach
using sequence data from the Arenaviridae family. For this purpose, we investigated the resolution
of Purple by evaluating different viral species as target organisms against a proteome background
of similar species and viruses in general. We used nine arenavirus species (MACV, JUNV, SABV,
CHAV, GTOV, LASV, LCMV, WWAV, and LUJV; see Table 1) with proteomes containing four proteins,
namely (1) RNA-directed RNA polymerase L, (2) nucleoprotein N, (3) pre-glycoprotein polyprotein
GP complex and (4) RING finger protein Z. As background proteomes, we added all reviewed virus
proteins available on UniProt/Swiss-Prot to remove frequently occurring peptides (e.g., from conserved
sequences of functional domains). The removal of target peptides from similar virus proteomes intends
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to eliminate false positive detections (i.e., to increase the specificity). Since the protein sequences differ
strongly between the arenavirus species, we expected to retrieve sufficient unique peptides for each
species that serve as candidates for designing a targeted assay. For a benchmarking, we examined the
relative amount of taxon-specific target peptides for each of the arenavirus species using both exact and
homologous matching mode (Tables 3 and 4). The homologous matching was performed to evaluate
the impact of sequence homologies for the arenaviruses and between these and all other virus species.

Table 3. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes. The second column provides the number of nonspecific peptides, i.e., the ones
being shared with the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

MACV 237 119 178 118
SABV 248 127 191 121
LUJV 250 24 241 226
CHAV 252 121 197 131
GTOV 244 75 205 169
JUNV 246 123 187 123
LASV 242 35 227 207
LCMV 245 31 232 214
WWAV 240 31 226 209

Table 4. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes and additionally against all reviewed virus proteomes (from UniProt/Swiss-Prot).
The second column provides the number of nonspecific peptides, i.e., the ones being shared with
the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

MACV 237 143 162 94
SABV 248 144 183 104
LUJV 250 52 229 198
CHAV 252 137 190 115
GTOV 244 118 189 126
JUNV 246 139 171 107
LASV 242 126 171 116
LCMV 245 110 187 135
WWAV 240 130 181 110

First, we investigated the ratios of taxon-specific unique peptides and in silico-digested peptides
with a background database consisting of the four arenavirus proteins, as mentioned above. The exact
matching yielded to taxon-specific peptide ratios between 75.1% (MACV) and 96.4% (LUJV) (Figure 4).
This can be explained by the high sequence diversity between the nine arenavirus species: when
generating multiple sequence alignments (MSA) of these species for their four proteins, overall, a low
consensus of the sequences was found (Supplementary Data S1–S4). When applying a background
consensus threshold of 80%, significantly fewer taxon-specific peptides were obtained with relative
numbers between 48.8% and 90.4% for SABV and LUJV, respectively (Figure 4). Overall, the mean
decrease in the ratio of all species is 16.6% and the strongest ratio decrease can be found for MACV
(25.3%), SABV (28.2%), CHAV (26.2%), and JUNV (26.0%). These four species are all New World
arenaviruses and part of the clade B (see Table 2). The close relationship of these four virus species (as
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shown in the phylogenetic tree in Figure 5) causes high numbers of shared peptides which explains the
decline in taxon-specific peptides. The Old World arenavirus LUJV shows the highest taxon-specific
peptide ratio after homologous matching (90.4%) and even after homologous analysis against all
virus proteomes (79.2%). This illustrates that LUJV has the lowest sequence similarity with the other
arenaviruses. The low similarity can be explained by the isolated geographical distribution of LUJV in
Southern Africa [32]. In 2008, an outbreak of LUJV led to a high case fatality rate of 80% (4/5 cases), and
a follow-up analysis of its genome confirmed that LUJV is a novel virus species being only distantly
related to known arenaviruses and groups genetically closer to Old World viruses not associated with
VHF [33].
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Figure 4. Relative amount of taxon-specific target peptides from nine arenavirus species proteomes.
The ratio of unique to in silico-digested peptides is shown for exact (lighter colors) and homologous
(darker colors) matching mode with a background consensus threshold of 80%. Orange bars show
the results for the database consisting of four virus proteins for each arenavirus species. Purple bars
indicate results that were generated when adding protein sequences from all reviewed virus proteomes
(from UniProt/Swiss-Prot) as additional background.

Next, we assessed the protein sequence coverage on the basis of Purple-selected unique peptides
for all four arenavirus proteins (RNA-directed RNA polymerase L; Nucleoprotein N; Pre-glycoprotein
polyprotein GP complex GLYC; RING finger protein Z). We evaluated two different backgrounds here:
(i) a small background with the arenavirus proteomes (containing the four proteins) of the remaining
eight non-target species and (ii) a large background containing all arenavirus proteomes combined
with all reviewed virus proteomes from UniProt/Swiss-Prot (see Section 2.3.2).

The analysis of the protein sequence coverage shows that L, GLYC and Z are relatively well
covered by the taxon-specific peptides across all nine species for the small background (Figure 6).
Nucleoprotein NCAP has the highest variability in protein coverage with an interquartile range (IQR)
of 35.22% on the small background, suggesting that NCAP is the best-conserved protein among the
considered arenavirus species. When taking a closer look at the results of the larger background
analysis with all reviewed virus proteins, it can be found that the coverage decreases for all four
proteins. The NCAP protein shows the lowest median in protein coverage (20.18%). This shows
that NCAP has the lowest sequence consensus of taxon-specific peptides with other virus proteomes,
indicating that it is the best-conserved of the four proteins. Indeed, the other three proteins (L, GLYC,
and Z) have above 40% sequence coverage, thus more taxon-specific peptides can be obtained from
these proteins. This analysis shows that, depending on the use case, it may make sense to investigate
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individual proteins instead of whole proteomes. For example, proteins with low sequence coverage
based on taxon-specific peptides may be excluded.
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Figure 5. Phylogenetic tree of the pre-glycoprotein polyprotein GP complex (GLYC) of nine arenaviruses.
The Whitewater strain is the only New World clade A/rec arenavirus (green). Lujo (LUJV), Lassa
(LASV), and Lymphocytic choriomeningitis (LCV) are geographical Old World arenaviruses (red).
Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Chapare (CHAV), and Sabia (SABV) are members
of the New World arenaviruses clade B (blue). The neighbor-joining tree without distance corrections
was created using CLUSTAL Omega [34] for the multiple sequence alignment and the tree visualization
software FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Viruses 2019, 11, x FOR PEER REVIEW 13 of 23 

 

Figure 5. Phylogenetic tree of the pre-glycoprotein polyprotein GP complex (GLYC) of nine 
arenaviruses. The Whitewater strain is the only New World clade A/rec arenavirus (green). Lujo 
(LUJV), Lassa (LASV), and Lymphocytic choriomeningitis (LCV) are geographical Old World 
arenaviruses (red). Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Chapare (CHAV), and 
Sabia (SABV) are members of the New World arenaviruses clade B (blue). The neighbor-joining tree 
without distance corrections was created using CLUSTAL Omega [34] for the multiple sequence 
alignment and the tree visualization software FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 

Next, we assessed the protein sequence coverage on the basis of Purple-selected unique peptides 
for all four arenavirus proteins (RNA-directed RNA polymerase L; Nucleoprotein N; Pre-
glycoprotein polyprotein GP complex GLYC; RING finger protein Z). We evaluated two different 
backgrounds here: (i) a small background with the arenavirus proteomes (containing the four 
proteins) of the remaining eight non-target species and (ii) a large background containing all 
arenavirus proteomes combined with all reviewed virus proteomes from UniProt/Swiss-Prot (see 
Section 2.3.2). 

The analysis of the protein sequence coverage shows that L, GLYC and Z are relatively well 
covered by the taxon-specific peptides across all nine species for the small background (Figure 6). 
Nucleoprotein NCAP has the highest variability in protein coverage with an interquartile range (IQR) 
of 35.22% on the small background, suggesting that NCAP is the best-conserved protein among the 
considered arenavirus species. When taking a closer look at the results of the larger background 
analysis with all reviewed virus proteins, it can be found that the coverage decreases for all four 
proteins. The NCAP protein shows the lowest median in protein coverage (20.18%). This shows that 
NCAP has the lowest sequence consensus of taxon-specific peptides with other virus proteomes, 
indicating that it is the best-conserved of the four proteins. Indeed, the other three proteins (L, GLYC, 
and Z) have above 40% sequence coverage, thus more taxon-specific peptides can be obtained from 
these proteins. This analysis shows that, depending on the use case, it may make sense to investigate 
individual proteins instead of whole proteomes. For example, proteins with low sequence coverage 
based on taxon-specific peptides may be excluded  

 
Figure 6. Protein sequence coverage of taxon-specific peptides selected by Purple on proteins for nine 
arenavirus species proteomes. The four proteins of the arenavirus proteomes are RNA-directed RNA 
polymerase L (L), nucleoprotein N (NCAP), pre-glycoprotein polyprotein GP complex (GLYC), and 
RING finger protein Z (Z). The coverage of selected peptides is displayed for homologous matching 
when applying a background consensus threshold of 80%. 

Figure 6. Protein sequence coverage of taxon-specific peptides selected by Purple on proteins for nine
arenavirus species proteomes. The four proteins of the arenavirus proteomes are RNA-directed RNA
polymerase L (L), nucleoprotein N (NCAP), pre-glycoprotein polyprotein GP complex (GLYC), and
RING finger protein Z (Z). The coverage of selected peptides is displayed for homologous matching
when applying a background consensus threshold of 80%.
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3.2. Evaluating Species-Level Classification Based on Detected Peptides from Viral Shotgun
Proteomics Measurements

To evaluate the peptide selection method in Purple on experimental data, we used representative
MS/MS datasets derived from human cowpox virus (CPXV) samples. The main goal was to test
whether peptides identified in a typical shotgun proteomics experiment can be used for differentiating
viruses at the species level. We also aimed for estimating the expected accuracy gain for taxonomic
classification when using a targeted proteomics assay on the basis of peptides suggested by Purple.

In a pre-analysis, we performed a Purple run using CPXV as target proteome to select
species-specific peptides. For the peptide selection process, 18 reviewed (from UniProt/Swiss-Prot) and
208 unreviewed (from UniProt/TrEMBL) CPXV-specific protein sequences were used as target database,
which is part of the PRIDE project (see Section 2.3.4). We used this combined database consisting
of reviewed and unreviewed protein sequences because the available reviewed protein sequences
for the Brighton Red strain yielded to a very limited number of peptide identifications during the
database search (Supplementary Table S2). All available virus proteomes (a total of 16,846 sequences)
and all reviewed human proteins were taken as background. These proteomes were obtained from
UniProt/Swiss-Prot (see Section 2.3 for database details).

The Purple run resulted in 1509 in silico-digested peptides after exact matching and 885 peptides
after homologous matching (using a background consensus threshold of 80%). The distribution of the
homologous background consensus shows a normal distribution below 50% (Supplementary Figure S2).
3986 peptides were discarded, because they were shared with other (i.e., non-CPXV) viral proteomes or
the human proteome. The remaining 885 CPXV-specific peptides have a mean background consensus
of 53.9%, which means that on average around half of the amino acids of each peptide are equal to
residues of peptides in the background.

Next, we searched experimental MS/MS spectra from CPXV samples using the search algorithm
MS-GF+ [31] against a CPXV and human sequence database for peptide identification (see Section 2.3).
In this analysis, CPXV datasets from MS measurements of three technical replicates, each with ~19,000
MS/MS spectra, were evaluated. The database search resulted in 4028, 4125, and 3967 identified
peptides per sample replicate with sequence duplicates removed. More than twice the amount of
CPXV peptides were identified as human peptides in this sample before applying a FDR filtering.
After applying an FDR threshold of 1%, 1067, 1028, and 1004 CPXV peptides were identified (Table 5).
Subsequently, the identified peptides (below 1% FDR threshold) were compared against the set of
taxon-specific CPXV peptides suggested by Purple using both exact and homologous matching mode.
Between 83 and 94 peptides selected by Purple were detected in the MS/MS experiments (without
applying any FDR threshold). When filtered by 1% FDR, the peptides decreased to numbers between
78 and 84. Consequently, this analysis demonstrates that it would be possible to reliably identify CPXV
for these three sample replicates.
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Table 5. This table shows the number of peptides from the cowpox virus (CPXV) Brighton Red strain
after (i) database search with duplicates removed (CPXV); (ii) database search with duplicates removed
(human); (iii) intersection of peptides obtained from Purple and peptide identifications from database
search; (iv) database search, duplicates removed and filtered by 1% FDR threshold; and (iiv) intersection
of peptides suggested by Purple and peptide identifications from FDR-filtered database search. The
CPXV Brighton Red strain was compared against the background of all reviewed virus proteomes and
the reviewed human proteome. In addition, the second column specifies the sample replicate data that
was used for the database search.

Strain Replicate No. Database
Search (CPXV)

No. Database
Search

(HUMAN)

No.
Intersection

No. Database
Search Filtered

No.
Intersection

Filtered

Brighton Red 1 4028 10319 94 1067 84
Brighton Red 2 4125 10286 83 1028 78
Brighton Red 3 3967 10068 92 1004 84

When considering the results of all three replicates, it can be observed that 61 CPXV-specific
peptides were detected without any applied FDR threshold (Figure 7A). Filtered by 1% FDR, 56 peptides
across all replicates can be used to specifically identify the species within the sample as a member of
CPXV (Figure 7B).
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When examining the peptides shared by the target and background proteomes, it can be found
that the Cowpox virus shares ~3000 peptide sequences per strain with the Vaccinia virus strains and
Variola virus strains (Figure 8). Other Orthopoxviruses were found as well, although the number of
peptides is low, due to fewer proteins of these strains in the background database. The CPXV Brighton
Red strain-specific peptides are small in number because most matches originate from the Cowpox
virus species proteome without giving any details about a particular strain. Around 500 peptides were
shared with the human proteome and were consequently discarded.
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3.3. Comparison of Strain vs. Strain and Strain vs. All Virus Level Resolution

Next, we conducted a performance evaluation using two different, yet highly similar Vaccinia
virus strains, namely VACV Copenhagen and VACV Western Reserve. The objective was to test
whether Purple can retrieve strain-specific peptides that are then used in the targeted proteomics
assay for accurate taxonomic classification. In this analysis, the target database contained sequences
from one of the two VACV virus strains (either Copenhagen or Western reserve). Consequently, the
background database contained the remaining VACV strain and all reviewed virus proteins available
on UniProt. This procedure was repeated with the remaining VACV strains as target. The goal was to
find strain-specific peptides to accurately detect the virus strain. We used a background consensus
threshold of 80% to filter out homologous peptides. Afterwards, experimental data (see Section 2.3.3)
was used to validate the results and to show if the selected strain-specific peptides are found in the
acquired tandem mass spectrometry (MS/MS) data. For peptide identification, we used the software
MS-GF+ [31] with an 1% FDR threshold (see Section 2.3.3).
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In the case of VACV Copenhagen, Purple discarded 3848 peptides because a perfect sequence
match was present in the background with a peptide of another strain or virus (Table 6). Equally,
3971 VACV Western Reserve peptides are marked as shared with the background and discarded. After
exact matching, 498 and 341 strain-specific peptides could be obtained for VACV Copenhagen and
VACV Western Reserve, respectively. The homologous matching removed additional 157 (VACV
Copenhagen) and 172 (VACV Western Reserve) peptides from the set of unique peptides. The remaining
352 (VACV Copenhagen) and 169 (VACV Western Reserve) peptides can be used to uniquely identify
the strain in a mixture of all reviewed virus proteins available on UniProt/Swiss-Prot.

Table 6. This table shows the number of taxon-specific peptides from the VACV Copenhagen and
VACV Western Reserve strain after (i) in silico digest, (ii) exact matching, and (iii) homologous matching
(80% background consensus threshold). Each target strain was compared against the background of the
other strain and all reviewed virus proteomes. The second column provides the number of nonspecific
peptides, i.e., the ones being shared with the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

Copenhagen 4200 3848 498 352
Western Reserve 4140 3971 341 169

In addition, we categorized the shared peptides by virus species to check for close relationships
in the background. For VACV Copenhagen, it can be observed that most peptide matches are found
in the Vaccinia species (Figure 9), owing to a high protein sequence similarity of involved Vaccinia
strains. Other contributing species are Camelpox virus, Cowpox virus, Monkeypox virus, Rabbitpox
virus, and Ectromelia virus. All these viruses are, as expected, members of the orthopoxvirus genus.
Similar findings could be observed for the results of the VACV Western Reserve strain (Supplementary
Figure S1). Note here that Figure 9 shows the number of peptides and if a species is underrepresented
in the databases, it will affect the outcome concerning the number of peptides that contribute to the
shared peptides.

To evaluate the detectability of taxon-specific peptides for the given DDA experiments, we
performed database searches for peptide identification using three different technical replicates of
VACV Copenhagen. Without any FDR cut-off, we could identify between 60 and 66 strain-specific
peptides selected by Purple (Table 7). However, when filtered by an FDR of 1% the number of peptides
decreased drastically and only one or two taxon-specific peptides were confirmed in the shotgun
proteomics data. It was possible to identify Replicate 1 and 2 as VACV Copenhagen by using the
peptide sequence ILFWPYIEDELR. The number of peptides can be increased by switching to a targeted
proteomics approach and by considering PTMs or by an improved homologous matching. The three
technical replicates of the VACV Western Reserve strain resulted in fewer peptides in the intersection
with the database search results (between 32 and 42), but when filtered by 1% FDR, the number of
peptides was increased up to 11-fold (with nine to 11 peptides) in comparison to the VACV Copenhagen
replicates. Six peptides were detected, and their sequences were identical among all three replicates.
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Table 7. This table shows the number of peptides from VACV Copenhagen and VACV Western Reserve
strain after (i) database search with duplicates removed; (ii) intersection of peptides obtained by Purple
and database search; (iii) database search, duplicates removed and filtering by FDR; and (iv) intersection
of peptides obtained by Purple and filtered database search. Each target strain was compared against
the background of the other strain and all reviewed virus proteomes. The second column specifies the
replicate data that was used for the database search.

Strain Replicate No. Database
Search

No.
Intersection

No. Database
Search Filtered

No. Intersection
Filtered

Copenhagen 1 3585 66 825 2
Copenhagen 2 3507 62 800 1
Copenhagen 3 3525 60 828 1

Western
Reserve 1 3636 35 841 9

Western
Reserve 2 3736 42 800 11

Western
Reserve 3 3507 32 809 9

In conclusion, we were able to identify every strain in each sample with an applied FDR of 1%.
For VACV Western Reserve, the number of peptides was higher than for the VACV Copenhagen
strain. The number of detectable peptides could be increased by improving scoring and filtering or by
switching from shotgun to targeted proteomics methods or by considering PTMs.

Figure 10 reveals a normal distributed homologous consensus in the interval from 10% to 50%.
This is caused by random matches with background peptides and these peptides should be unique
for the strain. We could not observe a distinct distribution above 50%. This could be improved by
moving from identity to a similarity-based matching, as this would differentiate peptides with the
same amount of matching consensus residuals.
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4. Discussion

The main goal of our developed Purple software is to provide taxon-specific peptides for a
targeted proteomics assay. These targeted assays can be used in a diagnostic setting to identify a virus
species/strain or even a whole virus family in a sample in sensitive and time-efficient manner. In this
work, we validated the software in three different benchmarking experiments.

Purple enabled us to retrieve taxon-specific peptides to distinguish between arenavirus species
proteomes that are very similar in their sequences (see Section 3.1). Accordingly, we observed a
comparable decrease in the ratio of unique to in silico-digested peptides for New and Old World
arenaviruses based on differences between their proteomes (Figure 4). This effect could also be
recognized also on the clade level for the New World viruses.

The data analysis of CPXV (see Section 3.2) resulted in 56 taxon-specific peptides (Figure 7).
These peptides were present in each MS/MS sample replicate and can be used to uniquely identify
CPXV in a mixed biological sample, although its proteome is very similar to other Orthopoxvirus
species and strains (Figure 8). By changing to a Brighton Red strain-specific target database, a reliable
determination of the strain would be possible as well. This underlines that Purple relies on a correct
and complete database to yield to the best possible results. Missing or incorrectly assigned protein
sequences could result in incorrect selected unique peptides or discarded ones. Furthermore, although
many spectra in the shotgun proteomics experiment were assigned to human peptides, this does not
present a limitation for the targeted proteomics approach, because unique virus peptides selected by
Purple can be detected using a targeted (e.g., PRM-based) assay in specific and sensitive manner; for
example, in a recently published study [35], a PRM-based assay was used to identify dengue virus
species directly from clinical serum samples. Nevertheless, to validate the resulting set of peptides, it
would be recommended to test them on other CPXV samples and to check if the peptides are detectable
in these samples likewise. In addition, the selected background database might be incomplete, e.g.,
when proteome references were missed to be included for the Purple analysis. In this case, it is
useful to validate Purple-selected peptides using secondary tools such as Unipept [36] for resolving
the taxonomic origin of any tryptic peptide based on the complete UniProt database. Furthermore,
false negatives may result from issues during sample preparation or poor instrument performance.
Therefore, these parameters need to be controlled in diagnostic PRM assays, e.g., by using internal
standards and running further quality control samples.

It can be crucial in virus infection scenarios to accurately distinguish between specific strains. To
cover these cases, we examined the strain-level resolution of our tool using data of VACV Copenhagen
and VACV Western Reserve strains (see Section 3.3). Purple was able to find a reliable amount of
strain-specific peptides (Table 7). The intersection between the Purple-selected peptides and the
peptide identification from the database search showed that it is possible to detect these peptides. In
general, strain-level identification was possible even for an applied FDR threshold of 1%, however, it
became apparent that the shotgun proteomics approach becomes limited due to the spurious numbers
of identified peptides. The number of peptides could be increased by adjusting the FDR filtering or by
using a targeted proteomics approach with higher sensitivity.

In comparison to other tools, Purple offers several advantages, such as cross-platform compatibility
on multiple operating systems. Purple allows a homology-based analysis of multiple proteome
databases at once and produces an aggregated and summarized export on various levels. In
addition, Purple is not limited to specific organisms, but can be used with general UniProt databases,
also including eukaryotic and bacterial databases. High sequence similarity between strains and
horizontal gene transfer may complicate taxon-specific classification for bacterial samples. However,
Purple could help to overcome complications and can be helpful for creating targeted assays for
bacterial detection as well. The graphical user interface and compatibility with all UniProt databases
enables researchers without bioinformatics background to find taxon-specific peptides in an easy and
straightforward manner.
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A potential improvement to the software would be to move from a sequence identity-based metric
based on the Hamming distance to similarity-based matching for the homologous matching mode. In
this case, amino acid substitutions are not weighted equally, for example by using a PAM or BLOSUM
matrix [37]. This similarity-based metric might allow a more accurate homologous matching in Purple.
For example, an approach based on a structural alignment as introduced by Ogata et al. [38] might be
useful. Further potential improvements with useful features in Purple include adding plots for better
data exploration and a tabular view for inspecting the results (that are currently exportable as text files
to spreadsheet software).

In summary, the most promising application of Purple is to select taxon-specific peptides for
creating tailored SRM or PRM assays with high sensitivity and specificity. This application will allow
for new time- and cost-efficient diagnostic methods in healthcare and further biological applications.
It could even be used to identify multiple organisms in a single sample in the context of targeted
metaproteomics [39].

Purple is available for download on our GitLab website (https://gitlab.com/rki_bioinformatics),
by using the Python package manager pip (https://pypi.org/project/purple-bio/) or via the Bioconda
channel (https://anaconda.org/bioconda/purple-bio) [40]. The software is available as graphical user
interface version, Python package and command line version for Windows, Linux, and MacOS. In
addition, user support, tutorials, and the documentation manual can be found on the GitLab webpages.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/6/536/s1,
Table S1: Genome sequence similarities of cowpox virus; Table S2: Number of peptides from CPXV Brighton
Red strain processing; Figure S1: Number of shared peptides by species for VACV Western Reserve; Figure S2:
Histogram and density plot of homologous consensus—CPXV; Data S1: MSA of the pre-glycoprotein polyprotein
GP complex (GPC gene); Data S2: MSA of nucleocapsid protein (N gene); Data S3: MSA of RNA-directed RNA
polymerase L (L gene); Data S4: MSA of RING finger protein Z (Z gene).
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