875 research outputs found

    The Two-Loop Pinch Technique in the Electroweak Sector

    Get PDF
    The generalization of the two-loop Pinch Technique to the Electroweak Sector of the Standard Model is presented. We restrict ourselves to the case of conserved external currents, and provide a detailed analysis of both the charged and neutral sectors. The crucial ingredient for this construction is the identification of the parts discarded during the pinching procedure with well-defined contributions to the Slavnov-Taylor identity satisfied by the off-shell one-loop gauge-boson vertices; the latter are nested inside the conventional two-loop self-energies. It is shown by resorting to a set of powerful identities that the two-loop effective Pinch Technique self-energies coincide with the corresponding ones computed in the Background Feynman gauge. The aforementioned identities are derived in the context of the Batalin-Vilkovisky formalism, a fact which enables the individual treatment of the self-energies of the photon and the ZZ-boson. Some possible phenomenological applications are briefly discussed.Comment: 50 pages, uses axodra

    Monopole characteristics in various Abelian gauges

    Get PDF
    Renormalization group (RG) smoothing is employed on the lattice to investigate and to compare the monopole structure of the SU(2) vacuum as seen in different gauges (maximally Abelian (MAG), Polyakov loop (PG) and Laplacian gauge (LG)). Physically relevant types of monopoles (LG and MAG) are distinguished by their behavior near the deconfining phase transition. For the LG, Abelian projection reproduces well the gauge independent monopole structure encoded in an auxiliary Higgs field. Density and localization properties of monopoles, their non-Abelian action and topological charge are studied. Results are presented confirming the Abelian dominance with respect to the non-perturbative static potential for all gauges considered.Comment: 36 pages, 12 figure

    Electron energy loss and induced photon emission in photonic crystals

    Full text link
    The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained from the retarding force exerted on the electron by the induced electric field. The features of the energy loss spectra are shown to be related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice constants aa relative to the wavelength of the associated electron excitations λ\lambda, an effective medium theory can be used to describe the material; however, for aλa\sim\lambda the photonic band structure plays an important role. Special attention is paid to the frequency gap regions in the latter case.Comment: 12 pages, 7 figure

    On topological charge carried by nexuses and center vortices

    Full text link
    In this paper we further explore the question of topological charge in the center vortex-nexus picture of gauge theories. Generally, this charge is locally fractionalized in units of 1/N for gauge group SU(N), but globally quantized in integral units. We show explicitly that in d=4 global topological charge is a linkage number of the closed two-surface of a center vortex with a nexus world line, and relate this linkage to the Hopf fibration, with homotopy Π3(S3)Z\Pi_3(S^3)\simeq Z; this homotopy insures integrality of the global topological charge. We show that a standard nexus form used earlier, when linked to a center vortex, gives rise naturally to a homotopy Π2(S2)Z\Pi_2(S^2)\simeq Z, a homotopy usually associated with 't Hooft-Polyakov monopoles and similar objects which exist by virtue of the presence of an adjoint scalar field which gives rise to spontaneous symmetry breaking. We show that certain integrals related to monopole or topological charge in gauge theories with adjoint scalars also appear in the center vortex-nexus picture, but with a different physical interpretation. We find a new type of nexus which can carry topological charge by linking to vortices or carry d=3 Chern-Simons number without center vortices present; the Chern-Simons number is connected with twisting and writhing of field lines, as the author had suggested earlier. In general, no topological charge in d=4 arises from these specific static configurations, since the charge is the difference of two (equal) Chern-Simons number, but it can arise through dynamic reconnection processes. We complete earlier vortex-nexus work to show explicitly how to express globally-integral topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page

    The DNDN, πΣc\pi \Sigma_c interaction in finite volume and the Λc(2595)\Lambda_c(2595) resonance

    Full text link
    In this work the interaction of the coupled channels DNDN and πΣc\pi \Sigma_c in an SU(4) extrapolation of the chiral unitary theory, where the Λc(2595)\Lambda_c(2595) resonance appears as dynamically generated from that interaction, is extended to produce results in finite volume. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the phase shifts in the infinite volume from the lattice results is solved. We observe that it is possible to obtain accurate πΣc\pi \Sigma_c phase shifts and the position of the Λc(2595)\Lambda_c(2595) resonance, but it requires the explicit consideration of the two coupled channels. We also observe that some of the energy levels in the box are attached to the closed DNDN channel, such that their use to induce the πΣc\pi \Sigma_c phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.

    Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum

    Get PDF
    A qualitative mechanism for the emergence of domain structured background gluon fields due to singularities in gauge field configurations is considered, and a model displaying a type of mean field approximation to the QCD partition function based on this mechanism is formulated. Estimation of the vacuum parameters (gluon condensate, topological susceptibility, string constant and quark condensate) indicates that domain-like structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous breakdown of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus describe confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added [1,2,4,5] and minor formulae corrected for typographical error

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure
    corecore