875 research outputs found
The Two-Loop Pinch Technique in the Electroweak Sector
The generalization of the two-loop Pinch Technique to the Electroweak Sector
of the Standard Model is presented. We restrict ourselves to the case of
conserved external currents, and provide a detailed analysis of both the
charged and neutral sectors. The crucial ingredient for this construction is
the identification of the parts discarded during the pinching procedure with
well-defined contributions to the Slavnov-Taylor identity satisfied by the
off-shell one-loop gauge-boson vertices; the latter are nested inside the
conventional two-loop self-energies. It is shown by resorting to a set of
powerful identities that the two-loop effective Pinch Technique self-energies
coincide with the corresponding ones computed in the Background Feynman gauge.
The aforementioned identities are derived in the context of the
Batalin-Vilkovisky formalism, a fact which enables the individual treatment of
the self-energies of the photon and the -boson. Some possible
phenomenological applications are briefly discussed.Comment: 50 pages, uses axodra
Monopole characteristics in various Abelian gauges
Renormalization group (RG) smoothing is employed on the lattice to
investigate and to compare the monopole structure of the SU(2) vacuum as seen
in different gauges (maximally Abelian (MAG), Polyakov loop (PG) and Laplacian
gauge (LG)). Physically relevant types of monopoles (LG and MAG) are
distinguished by their behavior near the deconfining phase transition. For the
LG, Abelian projection reproduces well the gauge independent monopole structure
encoded in an auxiliary Higgs field. Density and localization properties of
monopoles, their non-Abelian action and topological charge are studied. Results
are presented confirming the Abelian dominance with respect to the
non-perturbative static potential for all gauges considered.Comment: 36 pages, 12 figure
Electron energy loss and induced photon emission in photonic crystals
The interaction of a fast electron with a photonic crystal is investigated by
solving the Maxwell equations exactly for the external field provided by the
electron in the presence of the crystal. The energy loss is obtained from the
retarding force exerted on the electron by the induced electric field. The
features of the energy loss spectra are shown to be related to the photonic
band structure of the crystal. Two different regimes are discussed: for small
lattice constants relative to the wavelength of the associated electron
excitations , an effective medium theory can be used to describe the
material; however, for the photonic band structure plays an
important role. Special attention is paid to the frequency gap regions in the
latter case.Comment: 12 pages, 7 figure
On topological charge carried by nexuses and center vortices
In this paper we further explore the question of topological charge in the
center vortex-nexus picture of gauge theories. Generally, this charge is
locally fractionalized in units of 1/N for gauge group SU(N), but globally
quantized in integral units. We show explicitly that in d=4 global topological
charge is a linkage number of the closed two-surface of a center vortex with a
nexus world line, and relate this linkage to the Hopf fibration, with homotopy
; this homotopy insures integrality of the global
topological charge. We show that a standard nexus form used earlier, when
linked to a center vortex, gives rise naturally to a homotopy , a homotopy usually associated with 't Hooft-Polyakov monopoles and similar
objects which exist by virtue of the presence of an adjoint scalar field which
gives rise to spontaneous symmetry breaking. We show that certain integrals
related to monopole or topological charge in gauge theories with adjoint
scalars also appear in the center vortex-nexus picture, but with a different
physical interpretation. We find a new type of nexus which can carry
topological charge by linking to vortices or carry d=3 Chern-Simons number
without center vortices present; the Chern-Simons number is connected with
twisting and writhing of field lines, as the author had suggested earlier. In
general, no topological charge in d=4 arises from these specific static
configurations, since the charge is the difference of two (equal) Chern-Simons
number, but it can arise through dynamic reconnection processes. We complete
earlier vortex-nexus work to show explicitly how to express globally-integral
topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page
The , interaction in finite volume and the resonance
In this work the interaction of the coupled channels and
in an SU(4) extrapolation of the chiral unitary theory, where the
resonance appears as dynamically generated from that
interaction, is extended to produce results in finite volume. Energy levels in
the finite box are evaluated and, assuming that they would correspond to
lattice results, the inverse problem of determining the phase shifts in the
infinite volume from the lattice results is solved. We observe that it is
possible to obtain accurate phase shifts and the position of the
resonance, but it requires the explicit consideration of the
two coupled channels. We also observe that some of the energy levels in the box
are attached to the closed channel, such that their use to induce the phase shifts via L\"uscher's formula leads to incorrect results.Comment: 10 pages, 13 figures, accepted for publication in Eur. Phys. J.
Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum
A qualitative mechanism for the emergence of domain structured background
gluon fields due to singularities in gauge field configurations is considered,
and a model displaying a type of mean field approximation to the QCD partition
function based on this mechanism is formulated. Estimation of the vacuum
parameters (gluon condensate, topological susceptibility, string constant and
quark condensate) indicates that domain-like structures lead to an area law for
the Wilson loop, nonzero topological susceptibility and spontaneous breakdown
of chiral symmetry. Gluon and ghost propagators in the presence of domains are
calculated explicitly and their analytical properties are discussed. The
Fourier transforms of the propagators are entire functions and thus describe
confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added
[1,2,4,5] and minor formulae corrected for typographical error
BAs and boride III-V alloys
Boron arsenide, the typically-ignored member of the III-V arsenide series
BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma
conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an
X_1c-like indirect band gap, and its bond charge is distributed almost equally
on the two atoms in the unit cell, exhibiting nearly perfect covalency. The
reasons for these are tracked down to the anomalously low atomic p orbital
energy in the boron and to the unusually strong s-s repulsion in BAs relative
to most other III-V compounds. We find unexpected valence band offsets of BAs
with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is
significantly higher than that of AlAs, despite the much smaller bond length of
BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects
result from the unusually strong mixing of the cation and anion states at the
VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and
composition-independent band gap bowing. This means that while addition of
small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of
boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the
conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing
enthalpies which are smaller than in GaN-GaAs alloys. The unique features of
boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for
publication in Phys. Rev. B. Scheduled to appear Oct. 15 200
Scalar mesons moving in a finite volume and the role of partial wave mixing
Phase shifts and resonance parameters can be obtained from finite-volume
lattice spectra for interacting pairs of particles, moving with nonzero total
momentum. We present a simple derivation of the method that is subsequently
applied to obtain the pi pi and pi K phase shifts in the sectors with total
isospin I=0 and I=1/2, respectively. Considering different total momenta, one
obtains extra data points for a given volume that allow for a very efficient
extraction of the resonance parameters in the infinite-volume limit.
Corrections due to the mixing of partial waves are provided. We expect that our
results will help to optimize the strategies in lattice simulations, which aim
at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
- …