467 research outputs found

    Exploring the Association of Homicides in Northern Mexico and Healthcare Access for US Residents

    Get PDF
    Many legal residents in the United States (US)-Mexico border region cross from the US into Mexico for medical treatment and pharmaceuticals. We analyzed whether recent increases in homicides in Mexico are associated with reduced healthcare access for US border residents

    A Bioinformatics Resource for TWEAK-Fn14 Signaling Pathway

    Get PDF
    TNF-related weak inducer of apoptosis (TWEAK) is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Molecular Targets for 17α-Ethynyl-5-Androstene-3β,7β,17β-Triol, an Anti-Inflammatory Agent Derived from the Human Metabolome

    Get PDF
    HE3286, 17α-ethynyl-5-androstene-3β, 7β, 17β-triol, is a novel synthetic compound related to the endogenous sterol 5-androstene-3β, 7β, 17β-triol (β-AET), a metabolite of the abundant adrenal steroid dehydroepiandrosterone (DHEA). HE3286 has shown efficacy in clinical studies in impaired glucose tolerance and type 2 diabetes, and in vivo models of types 1 and 2 diabetes, autoimmunity, and inflammation. Proteomic analysis of solid-phase HE3286-bound bead affinity experiments, using extracts from RAW 264.7 mouse macrophage cells, identified 26 binding partners. Network analysis revealed associations of these HE3286 target proteins with nodes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for type 2 diabetes, insulin, adipokine, and adipocyte signaling. Binding partners included low density lipoprotein receptor-related protein (Lrp1), an endocytic receptor; mitogen activated protein kinases 1 and 3 (Mapk1, Mapk3), protein kinases involved in inflammation signaling pathways; ribosomal protein S6 kinase alpha-3 (Rsp6ka3), an intracellular regulatory protein; sirtuin-2 (Sirt2); and 17β-hydroxysteroid dehydrogenase 1 (Hsd17β4), a sterol metabolizing enzyme

    The NANOGrav 12.5-Year Data Set:Dispersion Measure Misestimations with Varying Bandwidths

    Get PDF
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches

    The NANOGrav 12.5-Year Data Set: Dispersion Measure Mis-Estimation with Varying Bandwidths

    Full text link
    Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency-dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from mis-estimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to mis-estimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643-1224, a pulsar with an excess of chromatic noise in its timing residuals. We artificially restricted these observations to a narrowband frequency range, then used both data sets to calculate residuals with a timing model that does not include short-scale dispersion variations. By fitting the resulting residuals to a dispersion model, and comparing the ensuing fitted parameters, we quantify the dispersion mis-estimations. Moreover, by calculating the autocovariance function of the parameters we obtained a characteristic timescale over which the dispersion mis-estimations are correlated. For PSR J1643-1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ~22 microseconds due to DM mis-estimations, with correlations over ~1 month. For lower-DM pulsars, the offset is ~7 microseconds. This error quantification can be used to provide more robust noise modeling in NANOGrav's data, thereby increasing sensitivity and improving parameter estimation in gravitational wave searches.Comment: 15 pages, 7 figure

    Examination of psychological risk factors for chronic pain following cardiac surgery: protocol for a prospective observational study

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Approximately 400 000 Americans and 36 000 Canadians undergo cardiac surgery annually, and up to 56% will develop chronic postsurgical pain (CPSP). The primary aim of this study is to explore the association of pain-related beliefs and gender-based pain expectations on the development of CPSP. Secondary goals are to: (A) explore risk factors for poor functional status and patient-level cost of illness from a societal perspective up to 12 months following cardiac surgery; and (B) determine the impact of CPSP on quality-adjusted life years (QALYs) borne by cardiac surgery, in addition to the incremental cost for one additional QALY gained, among those who develop CPSP compared with those who do not. METHODS AND ANALYSES: In this prospective cohort study, 1250 adults undergoing cardiac surgery, including coronary artery bypass grafting and open-heart procedures, will be recruited over a 3-year period. Putative risk factors for CPSP will be captured prior to surgery, at postoperative day 3 (in hospital) and day 30 (at home). Outcome data will be collected via telephone interview at 6-month and 12-month follow-up. We will employ generalised estimating equations to model the primary (CPSP) and secondary outcomes (function and cost) while adjusting for prespecified model covariates. QALYs will be estimated by converting data from the Short Form-12 (version 2) to a utility score. ETHICS AND DISSEMINATION: This protocol has been approved by the responsible bodies at each of the hospital sites, and study enrolment began May 2015. We will disseminate our results through CardiacPain.Net, a web-based knowledge dissemination platform, presentation at international conferences and publications in scientific journals. TRIAL REGISTRATION NUMBER: NCT01842568

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data
    corecore