3,860 research outputs found
The limits and basis of logical tolerance: Carnap’s combination of Russell and Wittgenstein
<p><i>Notes</i>: All data series were filtered by 40-yr Butterworth low-pass filter prior to statistical analysis. Differencing:</p>△<p>no difference,</p>α<p>1<sup>st</sup>difference. Significance (2-tailed):</p>∧<p>p<0.1,</p><p>*p<0.05,</p><p>**p<0.01,</p><p>***p<0.001.</p
Temperature and precipitation effects on agrarian economy in late imperial China
Climate change has been statistically proven to substantially influence the economy of early modern
Europe, particularly in the long term. However, a detailed analysis of climate change and the economy
of historical China remains lacking, particularly from a large-scale and quantitative perspective. This
study quantitatively analyzes the relationship between climate change and the economy in late
imperial China (AD1600–1840) at the national level. This study also compares the findings on the
relationship between climate change and the economy in late imperial China with those in early
modern Europe. Results of multivariate regression and Granger causality analyses indicate that (1)
climate change induces economic fluctuations in late imperial China, particularly in the long term; (2)
given that the economic center is located in South China during the study period, temperature has a
greater influence on the economy than precipitation; (3) the population of China is statistically proven
to primarily act as consumers in the long term; and (4) given the long-term role of the Chinese
population, the economic vulnerability in late imperial China under climate change is further
increased and is higher than that in early modern Europe, whose population mainly acts as producers
in the long term. In conclusion, the late imperial Chinese society has a high economic vulnerability to
climate change. These findings revisit Malthusian theory and ‘Great Divergence’ theory by including
the perspective of economic vulnerability under climate change during the study period. The role of
the population must be investigated further to address the socioeconomic vulnerabilities under
climate change
Micro-optical Tandem Luminescent Solar Concentrators
Traditional concentrating photovoltaic (CPV) systems utilize multijunction
cells to minimize thermalization losses, but cannot efficiently capture diffuse
sunlight, which contributes to a high levelized cost of energy (LCOE) and
limits their use to geographical regions with high direct sunlight insolation.
Luminescent solar concentrators (LSCs) harness light generated by luminophores
embedded in a light-trapping waveguide to concentrate light onto smaller cells.
LSCs can absorb both direct and diffuse sunlight, and thus can operate as flat
plate receivers at a fixed tilt and with a conventional module form factor.
However, current LSCs experience significant power loss through parasitic
luminophore absorption and incomplete light trapping by the optical waveguide.
Here we introduce a tandem LSC device architecture that overcomes both of these
limitations, consisting of a PLMA polymer layer with embedded CdSe/CdS quantum
dot (QD) luminophores and InGaP micro-cells, which serve as a high bandgap
absorber on top of a conventional Si photovoltaic. We experimentally synthesize
CdSe/CdS QDs with exceptionally high quantum-yield (99%) and ultra-narrowband
emission optimally matched to fabricated III-V InGaP micro-cells. Using a Monte
Carlo ray-tracing model, we show the radiative limit power conversion
efficiency for a module with these components to be 30.8% diffuse sunlight
conditions. These results indicate that a tandem LSC-on-Si architecture could
significantly improve upon the efficiency of a conventional Si photovoltaic
module with simple and straightforward alterations of the module lamination
steps of a Si photovoltaic manufacturing process, with promise for widespread
module deployment across diverse geographical regions and energy markets
Silicon/Carbon Nanotube Photocathode for Splitting Water
A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient
The effect of elastic therapeutic taping on lumbar extensor isokinetic performance
Objective: To investigate the effects of elastic therapeutic tape when applied overlaying the lumbar extensors on different measures of muscle performance, compared to a placebo taping technique and a no-tape control.
Relevance: Elastic therapeutic tape is frequently used as an adjunct to enhance athletic performance amongst athletes. However, limited research exists supporting its application on isokinetic performance of the lumbar extensor muscles.
Methods: A cross-sectional experimental study. 21 participants received three taping conditions in a randomised order: elastic therapeutic tape, a placebo tape and a no-tape control. Peak torque, the time taken to reach peak torque and peak velocity were measured using an isokinetic dynamometer.
Analysis: Friedman’s test and post-hoc Wilcoxon signed-rank test were used to determine the statistical differences between the three taping conditions. Level of significance was set at 0.05.
Results: A statistically significant improvement in peak lumbar extensor torque was observed when comparing elastic therapeutic tape with the no-tape control (p 0.05).
Conclusions: Results demonstrate that the application of elastic therapeutic tape overlaying the primary lumbar extensors significantly improves the maximal lumbar extension peak torque in healthy, asymptomatic adults
UVUDF: Ultraviolet Imaging of the Hubble Ultradeep Field with Wide-field Camera 3
We present an overview of a 90-orbit Hubble Space Telescope treasury program
to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the
Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters.
This survey is designed to: (i) Investigate the episode of peak star formation
activity in galaxies at 1<z<2.5; (ii) Probe the evolution of massive galaxies
by resolving sub-galactic units (clumps); (iii) Examine the escape fraction of
ionizing radiation from galaxies at z~2-3; (iv) Greatly improve the reliability
of photometric redshift estimates; and (v) Measure the star formation rate
efficiency of neutral atomic-dominated hydrogen gas at z~1-3. In this overview
paper, we describe the survey details and data reduction challenges, including
both the necessity of specialized calibrations and the effects of charge
transfer inefficiency. We provide a stark demonstration of the effects of
charge transfer inefficiency on resultant data products, which when
uncorrected, result in uncertain photometry, elongation of morphology in the
readout direction, and loss of faint sources far from the readout. We agree
with the STScI recommendation that future UVIS observations that require very
sensitive measurements use the instrument's capability to add background light
through a "post-flash". Preliminary results on number counts of UV-selected
galaxies and morphology of galaxies at z~1 are presented. We find that the
number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely
consistent with the number predicted by published luminosity functions. We also
confirm that the image mosaics have sufficient sensitivity and resolution to
support the analysis of the evolution of star-forming clumps, reaching 28-29th
magnitude depth at 5 sigma in a 0.2 arcsecond radius aperture depending on
filter and observing epoch.Comment: Accepted A
Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins
Bioinorganic canon states that active-site
thiolate coordination promotes rapid electron transfer (ET)
to and from type 1 copper proteins. In recent work, we have
found that copper ET sites in proteins also can be constructed
without thiolate ligation (called “type zero” sites). Here we
report multifrequency electron paramagnetic resonance
(EPR), magnetic circular dichroism (MCD), and nuclear
magnetic resonance (NMR) spectroscopic data together with
density functional theory (DFT) and spectroscopy-oriented
configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type
zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers
relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1
centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the
orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding
Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 < z < 3
We present estimates of intrinsic scatter in the star formation rate (SFR)–stellar mass (M_*) correlation in the redshift range 0.5 < z < 3.0 and in the mass range 10^7 < M_*<10^(11)M_⊙. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M_* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5σ depth) probes the SFR–M_* correlation down to M_* ~ 10^7M_⊙, a factor of 10–100× lower in M_* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR–M_* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter at low mass. However, it remains possible that intrinsic scatter increases at low mass on timescales shorter than ~100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10^7M_⊙
- …