2,320 research outputs found

    Transport properties and point contact spectra of Ni_xNb_{1-x} metallic glasses

    Full text link
    Bulk resistivity and point contact spectra of Ni_xNb_{1-x} metallic glasses have been investigated as functions of temperature (0.3-300K) and magnetic field (0-12T). Metallic glasses in this family undergo a superconducting phase transition determined by the Nb concentration. When superconductivity was suppressed by a strong magnetic field, both the bulk sample R(T) and the point contact differential resistance curves of Ni_xNb_{1-x} showed logarithmic behavior at low energies, which is explained by a strong electron - "two level system" coupling. We studied the temperature, magnetic field and contact resistance dependence of Ni_{44}Nb_{56} point-contact spectra in the superconducting state and found telegraph-like fluctuations superimposed on superconducting characteristics. These R(V) characteristics are extremely sensitive detectors for slow relaxing "two level system" motion.Comment: 4 pages, 5 figure

    Decoherence in Nearly-Isolated Quantum Dots

    Get PDF
    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime.Comment: Significant revisions to include comparison to theory. Related papers available at http://marcuslab.harvard.ed

    Economic development, human development, and the pursuit of happiness, April 1, 2, and 3, 2004

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring conference, which took place during April 1, 2, and 3, 2004.The conference asks the questions, how can we make sure that the benefits of economic growth flow into health, education, welfare, and other aspects of human development; and what is the relationship between human development and economic development? Speakers and participants discuss the role that culture, legal and political institutions, the UN Developmental Goals, the level of decision-making, and ethics, play in development

    Spin Degeneracy and Conductance Fluctuations in Open Quantum Dots

    Full text link
    The dependence of mesoscopic conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly two in a 1 square-micron dot at low temperature, to four or greater in 8 square-micron dots. The factor of two is expected for simple Zeeman splitting of spin degenerate channels. A possible explanation for the unexpected larger factors in terms of field-dependent spin orbit scattering is proposed.Comment: Includes new reference to related theoretical work, cond-mat/0010064. Other minor changes. Related papers at http://marcuslab.harvard.ed

    A Transient Sub-Eddington Black Hole X-ray Binary Candidate in the Dust Lanes of Centaurus A

    Get PDF
    We report the discovery of a bright X-ray transient, CXOU J132527.6-430023, in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of 1-2*10^38 erg/s in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to the dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100 fold increase in X-ray flux makes it either the first confirmed transient non-ULX black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10^38 erg/s) transient neutron star X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disc blackbody model are typical of an accreting ~10 Msol black hole in the thermally dominant state.Comment: 8 pages, 6 figures, accepted for publication in Ap

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    The Mysticism Scale as Measure for Subjective Spirituality: New Results with Hood's M-Scale and the Development of a Short Form

    Get PDF
    Streib H, Klein C, Keller B, Hood RW. The Mysticism Scale as Measure for Subjective Spirituality: New Results with Hood's M-Scale and the Development of a Short Form. In: Ai AL, Harris KA, Wink P, Paloutzian R, eds. Assessing Spirituality and Religion in a Diversified World: Beyond the Mainstream Perspective. New York: Springer; 2021: 45.In this chapter, we suggest the use of Hood’s Mysticism Scale (M-scale) for a differential assessment of subjective spirituality. We base this view on the conceptualization of mysticism and its relation to spirituality, and on the definition of spirituality as individualized experience-orientated religiosity. This perspective was empirically tested in the Bielefeld-based Cross-cultural Study on Spirituality, which explored in comprehensive semantic analyses how participants in the USA and Germany define spirituality and revealed that more spiritual than religious people preferably associate spirituality with experiences of all-connectedness, search for a higher self, existential truth, and humanistic morality. Moreover, structural equations modeling based on this and other recent data sets reveal that the M-scale and its factors have considerable effects on self-rated spirituality. Thus, we recommend the M-scale as measure for subjective spirituality, which avoids the widespread problem of many extant measures that assess spirituality primarily in terms of either (Christian) religiosity or psychosocial well-being. The M-scale may be very useful in research that intends to assess the subjective spirituality of a diversity of participants who might affiliate with various religious traditions and worldviews, including the non-religious, atheists, and non-theists. Besides the well-established 32-item version of the M-scale, the chapter additionally presents an economic 8-item short form of the M-scale and its psychometric properties

    Long-Term Persistence of Spike Antibody and Predictive Modeling of Antibody Dynamics Following Infection with SARS-CoV-2

    Get PDF
    BACKGROUND: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro and prevent disease in animal challenge models upon re-exposure. However, current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting. METHODS: The Co-Stars study prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike (S), receptor-binding-domain (RBD) and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for a maximum of 7 months with the Mesoscale Discovery Assay. Survival analysis determined the proportion of sero-reversion while two hierarchical Gamma models predicted the upper- and lower-bounds of long-term antibody trajectory. RESULTS: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days post-symptoms, >95% of participants had detectable S-antibodies compared to 75% with detectable N-antibodies. S-antibody was predicted to remain detectable in 95% of participants until 465 days [95%CI 370-575] using a 'continuous-decay' model and indefinitely using a 'decay-to-plateau' model to account for antibody secretion by long-lived plasma cells. S-antibody titers correlated strongly with surrogate neutralization in-vitro (R 2=0.72). N-antibodies, however, decayed rapidly with a half-life of 60 days [95%CI 52-68]. CONCLUSIONS: The Co-STAR's study data presented here provides evidence for long-term persistence of neutralizing S-antibodies. This has important implications for the duration of functional immunity following SARS-CoV-2 infection. In contrast, the rapid decay of N-antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics following SARS-CoV-2 infection

    Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1

    Get PDF
    ABSTRACT The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays
    • …
    corecore