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Decoherence in Nearly-Isolated Quantum Dots
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Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average
Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in
average peak height approaches the predicted universal value of 1/4 at temperatures well below the
single-particle level spacing, T < ∆, but is greatly suppressed for T > ∆, suggesting that inelastic
scattering or other dephasing mechanisms dominate in this regime.

The study of quantum coherence in small electronic
systems has been the subject of intense theoretical and
experimental attention in the last few years, motivated
both by questions of fundamental scientific interest con-
cerning sources of decoherence in materials [1, 2, 3, 4, 5],
as well as by the possibility of using solid state electronic
devices to store and manipulate quantum information
[6, 7].

Taking advantage of quantum coherence in the solid
state requires a means of isolating the device from various
sources of decoherence, including coupling to electronic
reservoirs. In this context, we have investigated coherent
electron transport through quantum dots weakly coupled
to reservoirs via tunneling point-contact leads. In this
nearly-isolated regime, it is expected theoretically that
inelastic relaxation due to e-e interactions will vanish be-
low a temperature that is parametrically larger than the
mean quantum level spacing in the dot, ∆ [8, 9, 10].

It is not obvious, however, how to measure coherence
in nearly-isolated electronic structures. In this Letter,
we introduce a novel method, applicable in this regime,
that uses the change in average Coulomb blockade (CB)
peak height upon breaking time-reversal symmetry as
the metric of quantum coherence within the dot. By
comparing our data to a model of CB transport that in-
cludes both elastic and inelastic transport processes [11],
we find inelastic rates that are consistent with dephasing
rates τ−1

ϕ in open quantum dots measured using ballistic
weak localization [4]. Extracting precise values for inelas-
tic scattering rates using this method appears possible,
but would require a quantitative theory of the crossover
from elastic to inelastic tunneling [12].

When a quantum dot is connected to reservoirs (la-
beled 1,2) via leads with weak tunneling conductance,
g1,2 ≪ 1 (in units of e2/h), transport is dominated by
Coulomb blockade, which suppresses conduction except
at specific voltages on a nearby gate. The result is a
series of evenly-spaced, narrow conduction peaks as the
gate voltage is swept, as seen in Fig. 1. In this regime,
the usual techniques for extracting electron decoherence
from transport measurements, for instance using weak
localization [13, 14], are not applicable. Instead, we take
advantage of an analog of weak localization that reflects
a sensitivity of the spatial statistics of wave functions
to the breaking of time-reversal symmetry. As in con-
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FIG. 1: Coulomb blockade peaks at electron temperature Te =
45 mK, for the 0.7 µm2 device at (a) B = 0 and (b) B = 15 mT .
Every second peak was measured, as peak-to-peak correlations
made measuring each peak inefficient. (c,d) Peak heights, extracted
from (a,b). Horizontal lines show average peak height, indicating
suppression of average height at B = 0.

ventional weak localization, this effect changes the aver-

age conductance—or in the present context, the average

CB peak height—upon breaking time-reversal symmetry
with a weak magnetic field [11, 15].

At low temperatures, CB peak heights fluctuate con-
siderably, as seen in Fig. 1, reflecting a distribution of
tunneling strengths between the quantum modes in the
dot and the leads. When Γ1, Γ2 ≪ kT ≪ ∆, where
Γ1(2) = g1(2)∆/2π are the couplings to the leads, trans-
port occurs via a single eigenstate of the dot. In this
case, CB peaks are thermally broadened and have a
height go = (π/2kT )(Γ1Γ2/(Γ1 + Γ2)) [16]. For chaotic
or disordered dots, universal spatial statistics of wave
functions allow full distributions of CB peak heights to
be calculated for both broken (B 6= 0) and unbroken
(B = 0) time-reversal symmetry [16, 17]. These distri-
butions have been observed experimentally [18, 19], with
good agreement between theory and experiment.

Although not emphasized in these earlier papers, it
is readily seen that the two distributions have different
averages. Introducing a dimensionless peak height α =
(1/〈Γ〉)(Γ1Γ2/(Γ1 + Γ2)) and assuming equivalent leads,
〈Γ2〉 = 〈Γ1〉 ≡ 〈Γ〉, one finds 〈α〉B=0 = 1/4 and 〈α〉B 6=0 =
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1/3. The resulting difference in average CB peak heights
for the two distributions, normalized by the average peak
height at B 6= 0,

δg̃o = δgo/〈go〉B 6=0 =
〈go〉B 6=0 − 〈go〉B=0

〈go〉B 6=0
, (1)

is then given by δg̃o = (〈α〉B 6=0−〈α〉B=0)/〈α〉B 6=0 = 1/4.
While the peak heights themselves are explicitly temper-
ature dependent, this normalized difference, δg̃o, does not
depend on temperature in the absence of inelastic pro-
cesses [11, 15].

The absence of explicit temperature dependence of δg̃o

is not limited to the regime kT ≪ ∆. As long as trans-
port through the dot is dominated by elastic scattering
(Γel ≫ Γin, where Γel = (Γ1 + Γ2) is the broadening
due to escape and Γin includes all inelastic processes),
the normalized difference in averages does not change
even for kT ≫ ∆, i.e., the result δg̃o = 1/4 is not af-
fected by thermal averaging. This remains valid as long
as kT < (Eth, Ec), where Eth ∼ h̄/τcross is the Thouless
energy (inverse crossing time), and Ec is the charging
energy of the dot.

As discussed in Ref. [11], the result δg̃o = 1/4 is re-
duced when inelastic processes dominate transport. In
particular, when Γel ≪ Γin, δg̃o(T ) → 0 for kTe/∆ → ∞
(see Fig. 2(b)). The difference in temperature depen-
dence of δg̃o between Γel ≪ Γin and Γel ≫ Γin arises
because for inelastic transport, 〈go〉 ∝ 〈Γ1〉〈Γ2〉/(〈Γ1〉 +
〈Γ2〉) (the Γ’s are averaged individually), whereas for
elastic transport, 〈go〉 ∝ 〈Γ1Γ2/(Γ1 + Γ2)〉 (the entire
fraction is averaged) [11]. It is this difference in behavior
of δg̃o(T ) that we use to characterize the relative strength
of inelastic processes.

Previous experiments investigating inelastic broaden-
ing of levels in nearly-isolated quantum dots have fo-
cussed on relaxation of excited states, identifying a tran-
sition from a discrete to a continuous level spectrum at
ǫ > Eth [20, 21, 22]. Other experiments using cou-
pled quantum dots have investigated phonon-mediated
inelastic scattering between dots [23]. To our knowledge,
the only experiment that has addressed the coherence
of ground state transport in a single, nearly-isolated dot
(i.e., at low bias, eVbias < ∆) are the experiments of
Yacoby et al [24] based on interference in an Aharonov-
Bohm ring with a dot (N ∼ 200; ∆ ∼ 40 µeV ) in one
arm. Because interference around the ring was observed,
the authors inferred a value τϕ > 10 ns by assuming that
the electron coherence time must be no shorter than the
dwell time of an electron in the dot. This range for τϕ is
somewhat longer than the values measured in open quan-
tum dots using ballistic weak localization [4], suggesting
that some enhancement of τϕ due to confinement may
be occurring in the Yacoby experiment. However, since
dot-in-ring measurements are rather different from weak-
localization measurements, a direct comparison of values
obtained in the two experiments may not be appropriate.

We report measurements for four different sized quan-
tum dots formed in a two-dimensional electron gas

Area ∆ N Eth Ec ǫ∗∗

( µm2) (µeV ) (µeV ) (µeV ) (µeV )

0.25 28 400 250 400 75

0.7 10 1400 150 290 32

3 2.4 6000 75 110 10

8 0.9 16000 45 65 5

TABLE I: Device parameters for the four quantum dots measured:
dot area, A, assuming 100 nm depletion at edges; mean spacing of
spin-degenerate levels, ∆ = 2πh̄2/m∗A, where m∗ is the effective
mass; number of electrons in the dot, N ∼ nA, where n = 2 ×

1011 cm−2 is the 2DEG density; Thouless energy, Eth; charging
energy Ech; and energy ǫ∗∗ below which dephasing times due to
e-e interactions are predicted to diverge (see text).

(2DEG), defined using Cr-Au lateral depletion gates on
the surface of a GaAs/AlGaAs heterostructure (see Ta-
ble I). All dots were made from the same wafer, which
has the 2DEG interface 90 nm below the surface and a Si
doping layer 40 nm from the 2DEG. The electron density
∼ 2.0×1011 cm−2 and bulk mobility ∼ 1.4×105 cm2/V s
yield a transport mean free path ∼ 1.5 µm, larger than
or comparable to the lithographic dimensions of the dots,
making transport predominantly ballistic within the de-
vices. Measurements were performed in a dilution refrig-
erator with base mixing chamber temperature of 25 mK.
Electron temperature, Te, in the reservoirs was measured
directly using the width of CB peaks [25], indicating
Te = 45 mK at base temperature.

CB peak heights were measured by sweeping one of
the gate voltages, Vg, over many peaks while simultane-
ously trimming the gate voltages that control lead con-
ductances to maintain a constant average transmission
with balanced leads throughout the sweep. This allowed
the collection of ∼ 50 peaks in the smallest dot, and
hundreds of peaks in larger dots (see Fig. 1). Addi-
tional ensembles were then collected by making small
changes to the dot shape using other gates. Average
peak heights, 〈go〉, were extracted from these data, col-
lected as a function of perpendicular magnetic field and
normalized by their averages away from B = 0. Fig-
ure 2(a) shows that the functional form for the normal-
ized average peak height, 〈g̃o(B)〉 = 〈go(B)〉/〈go〉B 6=0,
calculated within random matrix theory [15] agrees well
with the experimental values. Note that the average peak
height itself, dependent on temperature as well as the av-
erage lead transmissions, cannot be inferred from these
normalized plots. 〈g̃o(B)〉 was measured at several tem-
peratures in each device, and δg̃o(Te) was extracted for
each. These are presented in Fig. 2(b), together with
the predicted temperature dependences for δg̃o(Te) when
either elastic or inelastic transport dominate [11]. Ex-
cept where otherwise noted, the point contacts were set
to give 〈go〉B 6=0 ∼ 0.05, though different dot shapes had
average peak height that varied by up to 50%. The data
in Fig. 2(b) represent averages over several ensembles at
each temperature.
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FIG. 2: (a) Average peak height as a function of perpendicu-
lar magnetic field, normalized by the average at B 6= 0, for the
0.7 µm2 dot at Te = 45 mK. Theoretical curve (dashed) has
one adjustable parameter, setting its width [15]. (b) Normal-
ized change in average peak height at B = 0, δg̃o, at several
temperatures, Te, for all dots measured, along with theoreti-
cal values of δg̃o when either elastic (solid curve) or inelastic
(dashed curve) transport dominate [11]. Note crossover from
solid to dashed curve around kTe/∆ ∼ 1.

In the 0.25 µm2 dot at Te = 45 mK and 70 mK, δg̃o

was consistent with 1/4 as expected since kTe ≪ ∆ for
both temperatures. In this regime, one cannot distin-
guish between elastic and inelastic scattering since both
mechanisms give δg̃o ≃ 1/4. In the 0.7µm2 device at
45 mK, we again find δg̃o ∼ 0.25. In this dot, however,
45 mK corresponds to kTe/∆ ∼ 0.5. For Γin ≫ Γel, a
ratio kTe/∆ ∼ 0.5 gives a predicted value for the aver-
age peak height difference of δg̃o ∼ 0.13 (see the dashed
curve in Fig. 2(b)) whereas for Γel ≫ Γin, δg̃o = 0.25 for
all values of kTe/∆ (solid line in Fig. 2(b)). We there-
fore conclude that Γin < Γel in the 0.7µm2 device at
45 mK, when the point contact transmissions are set so
that 〈go〉 ∼ 0.05. We can extract Γel from average peak
height 〈go〉 using the equation Γel ∼ 〈go〉∆, valid in the
regime kTe

>
∼ ∆ [16]. For 〈go〉 ∼ 0.05 in the 0.7 µm2 de-

vice, this gives Γel ∼ 0.5 µeV , and we therefore conclude
Γin < 0.5 µeV at 45 mK.

Similarly, we can observe for each dot (with different
values of ∆), at each temperature, whether transport is
principally elastic or inelastic, or whether the two rates
are comparable. Measurements of 〈g̃o(B)〉 in the 0.7µm2

device at 45 mK, 70 mK, and 200 mK are shown in Fig.
3, with the extracted values of δg̃o(T ) shown in the in-
set. For the 0.7µm2 device, we find that Γel > Γin at
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FIG. 3: (a) Normalized average peak height as a function of
perpendicular magnetic field, for the 0.7 µm2 dot at several
temperatures. Inset shows δg̃o for each temperature, along
with theoretical curves from Ref. [11]. Note crossover from
solid to dashed curve at Te ∼ 200mK.

45 mK and 70 mK, whereas by 200 mK the crossover to
the lower curve (Γel < Γin) has begun, presumably be-
cause Γin increases at higher temperature. We infer that
a 0.7µm2 device at 200mK is in the crossover regime
Γin ∼ 0.5µeV .

We observe a similar crossover from Γel > Γin to
Γel < Γin by changing Γel at fixed temperature. Fig-
ure 4 shows 〈g̃o(B)〉 in the 0.7µm2 device at 200 mK
for three different settings of the point contacts, ranging
from 〈go〉B 6=0 = 0.016 to 〈go〉B 6=0 = 0.057; the extracted
values for δg̃o are shown in the inset. Despite significant
statistical uncertainty, it is clear that δg̃o decreases as Γel

decreases. We note that in the same device at 45 mK and
70 mK there is no difference in δg̃o for the same of point
contact transmissions, within experimental uncertainty.
This is presumably because Γin is lower at these temper-
atures, and Γel > Γin for all point contact transmissions
measured.

Based on recent theoretical arguments, one expects
inelastic scattering due to electron-electron interactions
to be strongly suppressed in isolated quantum dots for
kT < ǫ∗∗, where ǫ∗∗ ∼ N1/4∆ for ballistic chaotic dots
containing N electrons [8, 9, 10]. Because this suppres-
sion is not expected to occur in open dots, it is useful
to compare the constraints on inelastic rates discussed
above for nearly-isolated dots with experimental values
of the phase coherence time τϕ measured in open dots
[4]. Although there may be dephasing mechanisms that
do not involve inelastic processes, the inelastic scatter-
ing rate should provide a lower bound for the dephasing
rate τ−1

ϕ . Dephasing rates extracted from weak local-
ization in open quantum dots are found to be well de-
scribed by the empirical relation h̄/τϕ(Te) ∼ 0.04 kTe

over the range of temperatures ∼ 70 mK − 300 mK, in-
dependent of dot size [4]. For the closed dots we again
may use Γel ∼ 〈go〉∆, giving a ratio of elastic scattering
rate to dephasing rate in the corresponding open dots
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FIG. 4: (a) Normalized average peak height as a function
of perpendicular magnetic field, for the 0.7 µm2 dot at Te =
200mK for three settings of the point contacts. Inset shows
δg̃o for setting, along with theoretical curves from Ref. [11].
As Γin is decreased by closing point contacts, experimental
δg̃o moves away from solid curve (Γel > Γin) toward dashed
curve (Γel < Γin), as one would expect.

Γel/(h̄/τϕ) ∼ (〈go〉/0.04) kTe/∆. If, for the sake of com-
parison, we identify Γin with h̄/τϕ, we would then ex-
pect for 〈go〉B 6=0 ∼ 0.05 a ratio Γel/Γin ∼ kTe/∆, sug-
gesting a crossover between the curves in Fig. 2(b) for
kTe/∆ ∼ 1. The data in Fig. 2(b) do show a crossover
in the vicinity of kTe/∆ ∼ 1, consistent with the identi-

fication Γ
(closed)
in ∼ (h̄/τϕ)(open). For a more quantitative

comparison between dephasing in open dots and inelastic
scattering through nearly-isolated dots, one would need
a theoretical calculation of δg̃o in the regime Γel ∼ Γin

[12].
We do not see evidence for the predicted [8, 9, 10] di-

vergence of the coherence time for kTe/∆ < N1/4 ∼ 5. A
possible explanation is that electron-electron interactions
are not the primary dephasing mechanism in our system.
Several other mechanisms have been proposed, includ-
ing external radiation [3, 26], two-level systems [27], and
nuclear spins [28]. We cannot, however, rule out some
enhancement of coherence due to confinement at a level
reported in [24]. The lack of a quantitative theory in the
crossover regime Γin ∼ Γel prevents us from extracting
exact values for Γin from our data.

In conclusion, we have developed a new method of mea-
suring inelastic rates in a nearly-isolated quantum dot,
using the change in average CB peak height upon break-
ing time-reversal symmetry. These measurements appear
consistent with dephasing times previously measured in
open ballistic quantum dots, however for a careful quan-
titative analysis of our data we await a theory treating
the regime Γin ∼ Γel.
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