1,773 research outputs found

    The potential impact of BCG vaccine supply shortages on global paediatric tuberculosis mortality.

    Get PDF
    BACKGROUND: The Bacillus Calmette-Guérin (BCG) vaccine is provided to over 100 million neonates annually to protect against childhood tuberculosis (TB). Recent BCG manufacturing interruptions highlight global supply risks. We estimated the potential impact of BCG shortfalls on global paediatric (<15 years) TB mortality. METHODS: A static mathematical model was employed to estimate the number of paediatric TB deaths avoided by usual levels of BCG coverage, and potential additional TB deaths in the first 15 years of life due to 1-year BCG supply shortfalls of 6.3 % (as occurred in 2015) to 27.6 % (as anticipated without mitigating action in 2015) assuming no catch-up campaigns. RESULTS: BCG coverage without shortfalls, estimated at 90 % globally, was estimated to avoid 117,132 (95 % uncertainty range (UR): 5049-306,911) TB deaths globally per birth cohort in the first 15 years of life. An estimated 11,713 (UR: 505-30,691) additional TB deaths would occur in the first 15 years of life per 10 % (26 million dose) annual supply shortfall. A 16.5 million dose (6.3 %) shortfall as reported at the close of 2015, reflecting 84 % global coverage, was estimated as associated with 7433 (95 % UR: 320-19,477) excess TB deaths in the affected cohort in the first 15 years. A possible 24,914 (UR: 1074-65,278) additional deaths were avoided due to prompt shortfall reduction measures in 2015. CONCLUSIONS: BCG shortages could greatly increase paediatric TB mortality. Although rapid action in 2015 minimised BCG shortfalls, avoiding a large number of potential additional deaths, the possible public health impact of even relatively small shortfalls highlights the critical importance of ensuring secure future manufacturing capacity and global BCG supply continuity

    CP Test in J/Psi -> gamma phi phi Decay

    Full text link
    We propose to test CP symmetry in the decay \jp\to \gamma \phi\phi, for which large data sample exists at BESII, and a data sample of 101010^{10} J/ψJ/\psi's will be collected with BESIII and CLEO-C program. We suggest some CP asymmetries in this decay mode for CP test. Assuming that CP violation is introduced by the electric- and chromo-dipole moment of charm quark, these CP asymmetries can be predicted by using valence quark models. Our work shows a possible way to get information about the electric- and chromo-dipole moment of charm quark, which is little known. Our results show that with the current data sample of J/ψJ/\psi, electric- and chromo-dipole moment can be probed at order of 1014ecm10^{-14}e cm. In the near future with a 101010^{10} data sample, these moments can be probed at order of 1016ecm10^{-16}e cm.Comment: Misprints corrected. To appear in Phys. Lett.

    Anisotropic Release of the Residual Zero-point Entropy in the Spin Ice Compound Dy2Ti2O7: Kagome-ice Behavior

    Get PDF
    We report the specific heat and entropy of single crystals of the spin ice compound Dy2Ti2O7 at temperatures down to 0.35 K. We apply magnetic fields along the four characteristic directions: [100], [110], [111] and [112]. Because of Ising anisotropy, we observe anisotropic release of the residual zero-point entropy, attributable to the difference in frustration dimensionality. In the high magnetic field along these four directions, the residual entropy is almost fully released and the activation entropy reaches Rln2. However, in the intermediate field region, the entropy in fields along the [111] direction is different from those for the other three field directions. For the [111] direction the frustration structure changes from that of three-dimensional(3D) pyrochlore to that of two-dimensional(2D) Kagome-like lattice with constraint due to the ice rule, leading to different values of zero-point entropy.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Risk homeostasis theory - A study of intrinsic compensation

    Get PDF
    Risk homeostasis theory (RHT) suggests that changes made to the intrinsic risk of environments are negated in one of three ways: behavioural adjustments within the environment, mode migration, and avoidance of the physical risk. To date, this three-way model of RHT has little empirical support, whilst research findings on RHT have at times been diametrically opposed. A reconciliation of apparently opposing findings might be possible by suggesting that extrinsic compensation fails to restore previously existing levels of actual risk in cases where behavioural adjustments within the environment are incapable of negating intrinsic risk changes. This paper reports a study in which behavioural adjustments within the physical risk-taking environment are capable of reconciling target with actual risk. The results provide positive support for RHT in the form of overcompensation for the intrinsic risk change on specific driver behaviours

    Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation

    Full text link
    Abstract. Interpolation is required in many medical image processing operations. From sampling theory, it follows that the ideal interpolation kernel is the sinc function, which is of infinite extent. In the attempt to obtain practical and computationally efficient image processing al-gorithms, many sinc-approximating interpolation kernels have been de-vised. In this paper we present the results of a quantitative comparison of 84 different sinc-approximating kernels, with spatial extents ranging from 2 to 10 grid points in each dimension. The evaluation involves the application of geometrical transformations to medical images from dif-ferent modalities (CT, MR, and PET), using the different kernels. The results show very clearly that, of all kernels with a spatial extent of 2 grid points, the linear interpolation kernel performs best. Of all kernels with an extent of 4 grid points, the cubic convolution kernel is the best (28 %- 75 % reduction of the errors as compared to linear interpolation). Even better results (44 %- 95 % reduction) are obtained with kernels of larger extent, notably the Welch, Cosine, Lanczos, and Kaiser windowed sinc kernels. In general, the truncated sinc kernel is one of the worst performing kernels.

    Do group dynamics play a role in the evolution of member galaxies?

    Get PDF
    We examine galaxy groups from the present epoch to z ∼ 1 to explore the impact of group dynamics on galaxy evolution. We use group catalogues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high-redshift GEEC2 samples to study how the observed member properties depend on the galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of ∼1013–1014.5 M⊙, or with dynamical state. However, at z ∼ 0.4 we do find some evidence that the quiescent fraction in low-mass galaxies [log10(Mstar/M⊙) ≲ 10.5] is lower in groups with substructure. Additionally, our results show that the fraction of groups with non-Gaussian velocity distributions increases with redshift to z ∼ 0.4, while the amount of detected substructure remains constant to z ∼ 1. Based on these results, we conclude that for massive galaxies [log10(Mstar/M⊙) ≳ 10.5], evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or the dynamical state. For low-mass galaxies, we do find some evidence of a correlation between the quiescent fraction and the amount of detected substructure, highlighting the need to probe further down the stellar mass function to elucidate the role of environment in galaxy evolution

    Effective action and density functional theory

    Get PDF
    The effective action for the charge density and the photon field is proposed as a generalization of the density functional. A simple definition is given for the density functional, as the functional Legendre transform of the generator functional of connected Green functions for the density and the photon field, offering systematic approximation schemes. The leading order of the perturbation expansion reproduces the Hartree-Fock equation. A renormalization group motivated method is introduced to turn on the Coulomb interaction gradually and to find corrections to the Hartree-Fock and the Kohn-Sham schemes.Comment: New references and a numerical algorithm added, to appear in Phys. Rev. B. 30 pages, no figure

    Charm Contribution to the Structure Function in Diffractive Deep Inelastic Scattering

    Get PDF
    The charm contribution to the structure functions of diffractive deep inelastic scattering is considered here within the context of the Ingelman-Schlein model. Numerical estimations of this contribution are made from parametrizations of the HERA data. Influence of the Pomeron flux factor is analized as well as the effect of the shape of the initial parton distribution employed in the calculations. The obtained results indicate that the charm contribution to diffractive deep inelastic process might be large enough to be measured in the HERA experiments.Comment: 16 pages, RevTeX, 6 figures, to be published in Physical Review
    corecore