1,519 research outputs found
Energy conditions, traversable wormholes and dust shells
Firstly, we review the pointwise and averaged energy conditions, the quantum
inequality and the notion of the ``volume integral quantifier'', which provides
a measure of the ``total amount'' of energy condition violating matter.
Secondly, we present a specific metric of a spherically symmetric traversable
wormhole in the presence of a generic cosmological constant, verifying that the
null and the averaged null energy conditions are violated, as was to be
expected. Thirdly, a pressureless dust shell is constructed around the interior
wormhole spacetime by matching the latter geometry to a unique vacuum exterior
solution. In order to further minimize the usage of exotic matter, we then find
regions where the surface energy density is positive, thereby satisfying all of
the energy conditions at the junction surface. An equation governing the
behavior of the radial pressure across the junction surface is also deduced.
Lastly, taking advantage of the construction, specific dimensions of the
wormhole, namely, the throat radius and the junction interface radius, and
estimates of the total traversal time and maximum velocity of an observer
journeying through the wormhole, are also found by imposing the traversability
conditions.Comment: 11 pages, 3 figures, Revtex
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation
A thought experiment is proposed to demonstrate the existence of a
gravitational, vector Aharonov-Bohm effect. A connection is made between the
gravitational, vector Aharonov-Bohm effect and the principle of local gauge
invariance for nonrelativistic quantum matter interacting with weak
gravitational fields. The compensating vector fields that are necessitated by
this local gauge principle are shown to be incorporated by the DeWitt minimal
coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent
fields, and applied to problem of the interaction of radiation with
macroscopically coherent quantum systems, including the problem of
gravitational radiation interacting with superconductors. But first we examine
the interaction of EM radiation with superconductors in a parametric oscillator
consisting of a superconducting wire placed at the center of a high Q
superconducting cavity driven by pump microwaves. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the
separated configuration than the unseparated one, which then leads to an
observable dynamical Casimir effect. We speculate that a separated parametric
oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
Disc polarization from both emission and scattering of magnetically aligned grains: the case of NGC 1333 IRAS 4A1
Stars and planetary system
Breaking down the mussel (Mytilus edulis) shell: Which layers affect Oystercatchers' (Haematopus ostralegus) prey selection?
Copyright © 2011 Elsevier. NOTICE: this is the authorâs version of a work that was accepted for publication in Journal of Experimental Marine Biology and Ecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Experimental Marine Biology and Ecology, 2011, Vol. 405, Issue 1-2, pp. 87 â 92 DOI: http://dx.doi.org/10.1016/j.jembe.2011.05.021Predators are able to identify fine characteristic features of prey and use them to maximise the profitability of foraging. Oystercatchers Haematopus ostralegus select thin-shelled mussels Mytilus edulis to hammer through because they are easier to crack than thick-shelled mussels. But mussel shells are composite structures, so we need to ask what it is about these thin-shelled mussels that make them vulnerable. Here we show that the mussels damaged by Oystercatchers were mainly distinguished by having a significantly thinner prismatic layer than undamaged mussels. Regression analysis indicated that the Oystercatchers' shell selection was independently influenced by the thickness of the prismatic and nacreous layers, but the coefficient for the thickness of the prismatic layer was almost one and a half times that for the nacreous layer. Thus the thickness of the prismatic layer largely determines the vulnerability of the mussel shells. Oystercatchers were more likely to attack mussels by the right valve than the left, and this tendency was accentuated in larger mussels and those with a thicker nacreous layer
Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements
We report new constraints on extra-dimensional models and other physics
beyond the Standard Model based on measurements of the Casimir force between
two dissimilar metals for separations in the range 0.2--1.2 m. The Casimir
force between an Au-coated sphere and a Cu-coated plate of a
microelectromechanical torsional oscillator was measured statically with an
absolute error of 0.3 pN. In addition, the Casimir pressure between two
parallel plates was determined dynamically with an absolute error of mPa. Within the limits of experimental and theoretical errors, the results
are in agreement with a theory that takes into account the finite conductivity
and roughness of the two metals. The level of agreement between experiment and
theory was then used to set limits on the predictions of extra-dimensional
physics and thermal quantum field theory. It is shown that two theoretical
approaches to the thermal Casimir force which predict effects linear in
temperture are ruled out by these experiments. Finally, constraints on Yukawa
corrections to Newton's law of gravity are strengthened by more than an order
of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for
publication in Phys. Rev.
Guidelines for a Space Propulsion Device Based on Heim's Quantum Theory
The text of the calligraphy on the front page means Cosmos, comprising the two chinese symbols for space and time. This calligraphy was done by Hozumi Gensho Roshi, Professor of Applied Sci-ences at Hanazono University, Kyoto, Japan in September 2003. The two red squares depict the sea
Morris-Thorne wormholes with a cosmological constant
First, the ideas introduced in the wormhole research field since the work of
Morris and Thorne are briefly reviewed, namely, the issues of energy
conditions, wormhole construction, stability, time machines and astrophysical
signatures. Then, spherically symmetric and static traversable Morris-Thorne
wormholes in the presence of a generic cosmological constant are analyzed. A
matching of an interior solution to the unique exterior vacuum solution is done
using directly the Einstein equations. The structure as well as several
physical properties and characteristics of traversable wormholes due to the
effects of the cosmological term are studied. Interesting equations appear in
the process of matching. For instance, one finds that for asymptotically flat
and anti-de Sitter spacetimes the surface tangential pressure of the
thin-shell, at the boundary of the interior and exterior solutions, is always
strictly positive, whereas for de Sitter spacetime it can take either sign as
one could expect, being negative (tension) for relatively high cosmological
constant and high wormhole radius, positive for relatively high mass and small
wormhole radius, and zero in-between. Finally, some specific solutions with
generic cosmological constant, based on the Morris-Thorne solutions, are
provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published
in Physical Review
Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method
We complete classical investigations concerning the dynamical stability of an
infinite homogeneous gaseous medium described by the Euler-Poisson system or an
infinite homogeneous stellar system described by the Vlasov-Poisson system
(Jeans problem). To determine the stability of an infinite homogeneous stellar
system with respect to a perturbation of wavenumber k, we apply the Nyquist
method. We first consider the case of single-humped distributions and show
that, for infinite homogeneous systems, the onset of instability is the same in
a stellar system and in the corresponding barotropic gas, contrary to the case
of inhomogeneous systems. We show that this result is true for any symmetric
single-humped velocity distribution, not only for the Maxwellian. If we
specialize on isothermal and polytropic distributions, analytical expressions
for the growth rate, damping rate and pulsation period of the perturbation can
be given. Then, we consider the Vlasov stability of symmetric and asymmetric
double-humped distributions (two-stream stellar systems) and determine the
stability diagrams depending on the degree of asymmetry. We compare these
results with the Euler stability of two self-gravitating gaseous streams.
Finally, we determine the corresponding stability diagrams in the case of
plasmas and compare the results with self-gravitating systems
Measurement of beauty production in deep inelastic scattering at HERA
The beauty production cross section for deep inelastic scattering events with
at least one hard jet in the Breit frame together with a muon has been
measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA
using integrated luminosity of 72 pb^-1. The total visible cross section is
sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The
next-to-leading order QCD prediction lies about 2.5 standard deviations below
the data. The differential cross sections are in general consistent with the
NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon
transverse momentum, and high values of jet transverse energy and muon
pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
- âŠ