4,654 research outputs found

    A review of nonlinear constitutive models for metals

    Get PDF
    Over the past two decades a number of thermomechanical constitutive theories have been proposed for viscoplastic metals. These models are in most cases similar in that they utilize a set of internal state variables which provide locally averaged representations of microphysical phenomena such as dislocation rearrangement and grain boundary sliding. The state of development of several of these models is now at the point where accurate theoretical solutions can be obtained for a wide variety of structural problems at elevated temperatures. The fundamentals of viscoplasticity are briefly reviewed and a general framework is outlined. Several of the more prominent models are reviewed, and predictions from models are compared to experimental results

    Evaluation of Satellite Microwave Derived Surface Temperature Algorithms for the Period August 1996 to February 1997

    Get PDF
    The Air Force Weather Agency (AFWA) has two operational algorithms that derive surface temperatures from microwave observations taken by the Special Sensor Microwave Imager (SSM/I) which rides aboard space platforms of the Defense Meteorological Satellite Program (DMSP). The algorithm called Temperature from Satellite Microwave Imager (TS) is used to analyze global cloud coverage. The second algorithm is fittingly called Calibration and Validation (CV), as it was the algorithm used to calibrate and validate the first SSM/I in 1987. Multiple linear regression defined the algorithms from empirically gathered brightness temperatures and simultaneous surface temperatures. The key questions were how much data do these algorithms produce and how accurate is it. These questions were answered with a multi-seasonal comparative study over four locations. The study matched algorithm outputs to conventional weather station temperature readings. Over 13,300 data pairs were generated from the 1996 summer and fall and 1996-1997 winter for the Continental United States, Bosnia, Korea, and Saudi Arabia. The results show TS produced on average 7% more surface temperatures than CV. CV met AFWA\u27s accuracy criteria 16% more often than TS. On average, CV was 1.0 degree Celsius more accurate than TS. The study generated bias tables for all locations and seasons

    Progressive failure methodologies for predicting residual strength and life of laminated composites

    Get PDF
    Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented

    Organic amendment increases arbuscular mycorrhizal fungal diversity in primary coastal dunes

    Get PDF
    Plastic pots were inserted beneath seedlings of a shallow-rooted C4 grass species, Ischaemum indicum, with and without a root-impenetrable nylon sachet filled with organic matter (OM) amendment, at seven stations along an interrupted belt transect in which plant community and soil chemistry had been previously surveyed. The transect was perpendicular to mean high-water mark (MH-WM) across a primary coastal dune system in Goa, India, where summer monsoon is the predominant weather feature. The Quadrat survey of plant frequency was made in stations when the above-ground biomass was estimated to be highest. Arbuscular mycorrhiza fungal (AMF) spore density and diversity were determined morphologically in amended and control pots soils, and in OM sachet residues, after host-plant desiccation when monsoon rains had ceased. Twenty-seven AM fungal spore morphotypes were isolated from the pots containing OM amended rhizosphere soils, 19 from controls and 14 from OM residues in the sachets. Gigaspora margarita proved to be the dominant spore in all treatments. Eight morphotypes recovered from amended pots were not recovered from the controls. There was an increasing trend in species diversity in amended pots away from MH-WM. Spore recovery from the three regimes showed variable distribution that indicated differing AMF species strategies

    Coherent Population Trapping of Electron Spins in a Semiconductor

    Full text link
    In high-purity n-type GaAs under strong magnetic field, we are able to isolate a lambda system composed of two Zeeman states of neutral-donor bound electrons and the lowest Zeeman state of bound excitons. When the two-photon detuning of this system is zero, we observe a pronounced dip in the excited-state photoluminescence indicating the creation of the coherent population-trapped state. Our data are consistent with a steady-state three-level density-matrix model. The observation of coherent population trapping in GaAs indicates that this and similar semiconductor systems could be used for various EIT-type experiments.Comment: 5 pages, 4 figures replaced 6/25/2007 with PRL versio

    Recent progress in NASA Langley textile reinforced composites program

    Get PDF
    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials

    Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    Get PDF
    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry

    Don\u27t Be Angry with Me Darling / music by H. P. Danks; words by W. L. Gardner

    Get PDF
    https://egrove.olemiss.edu/sharris_a/1010/thumbnail.jp

    Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury

    Get PDF
    Abstract Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome

    Progressive Damage Analysis of Laminated Composite (PDALC) (A Computational Model Implemented in the NASA COMET Finite Element Code)

    Get PDF
    A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged damage variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete listing of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occurs during the loading history. Residual strength predictions made with this information compared favorably with experimental measurements
    • …
    corecore