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ABSTRACT

Over the past two decades a number of thermomechanical constitutive
theories have been proposed for viscoplastic metals. These models are in most
cases similar in that they utilize a set of internal state variables which
provide locally averaged representations of microphysical phenomena such as
dislocation rearrangement and grain boundary sliding. The state of
development of several of these models is now at the point where accurate
theoretical solutions can be obtained for a wide variety of structural
problems at elevated temperatures.

The purpose of this paper is threefold. First, the fundamentals of
viscoplasticity are briefly reviewed and a general framework is outlined.
Second, several of the more prominent models are reviewed in some detail. And

third, predictions from models are compared to experimental results.



INTRODUCTION

Since World War II there have been an increasing number of applications
in which structural materials are required to operate at very high
temperatures. Perhaps the first large scale example of this occurred in the
nuclear power industry, wherein temperatures in excess of 2000°F are
common. Recently, interest in the National Aerospace Plane, wherein
hypersonic shock interaction causes predicted temperatures in excess of
3000°F, has enhanced interest in this subject. The quest for more efficient
gas turbines has also forced operating temperatures to increase. Since
experimentation in such hostile environments is extremely expensive, it 1is
desirable to produce accurate theoretical models for the structural analysis
of components constructed from viscoplastic metals.

In all of these cases the structural materials commonly in use exhibit a
substantial amount of 1inelastic constitutive behavior. Indeed, they are
loading history, temperature, and strain rate dependent, as well as highly
nonlinear. Hence, it is clear that any successful modelling attempt will be
extremely complex in nature.

The most recent advances in constitutive theories to predict the
inelastic behavior of structural materials have been the incorporation of the
effects of temperature and rate dependence into the stress-strain
relationships. The ability to predict the temperature and rate dependence of
structural materials used in elevated temperature applications is especially
important to the aerospace industry wherein substantial weight savings can be
accomplished if safety factors can be reduced by the use of accurate
analytical models. Most metals become viscoplastic, i.e., exhibit rate
dependent inelasticity at temperatures above about four-tenths of their

melting temperature. The models to describe this material behavior are more




intricate than elastic-plastic models since the inclusion of rate dependence
represents a significant increase in complexity of the mathematical model
required to describe the observed material behavior. This is evident because
in the classical rate-independent plasticity theory of metals the only
parameter required to characterize the plastic strain is », @ history
dependent scalar material property that relates inelastic strain rate to
stress through the flow rule, which may be obtained experimentally from a
single phenomenological uniaxial stress-strain curve. However, when the
material becomes significantly rate dependent the uniaxial monotonic stress-
strain curve 1is no longer unique. Therefore, it becomes necessary to
construct a mathematical equation governing x. This equation can only be
constructed by obtaining cons%derab]e experimental information about the
response of the material to changes in the independent variables such as
strain, strain rate, and temperature. The experiments required to obtain this
information are usually cumbersome and expensive.

Historically, there have been two distinct approaches to the modelling of
inelastic materials: 1) the functional theory [1], in which all dependent
state variables are assumed to depend on the entire history of the specified
observable state variables; and 2) the internal state variable (ISV) approach
[2], wherein history dependence is postulated to appear explicitly in a set of
ISV's. Lubliner [3] has shown that in most circumstances ISV models can be
considered to be special cases of functional models. Because the internal
state variables are readily identifiable in metals, most models currently
under development are of the ISV type. This form has the added benefit that it
js also usually more computationally tractable than the functional form.

This article will focus on several of the ISV models which have shown

promise for predicting the comp1ei stress-strain response of metals at



elevated temperature.

constitutive model wusing the ISV formulation,

After establishing the general

several

framework for a

state-of-the-art

thermoviscoplastic models will be reviewed along with examples of the model

predictions compared to experimental results.

SYMBOLS
uniaxial stress
stress tensor
elastic modulus tensor
Young's modulus
uniaxial strain
uniaxial inelastic strain
uniaxial thermal strain
strain tensor
creep strain tensor
inelastic strain tensor
plastic strain tensor
thermal strain tensor
drag stress
uniaxial back stress
back stress tensor
general set of internal state variables
hardening parameters
recovery parameters
inelastic flow parameter
sign

time




T temperature

damage tensor

4ij

1
oij deviatoric stress tensor
u3iJ deviatoric back stress tensor
J2 second deviatoric stress invariant
. . . _ .1
wp rate of inelastic work = °ij Eij

GENERAL THERMOVISCOPLASTIC CONSTITUTIVE MODEL FRAMEWORK

The concept of ISV's, sometimes called hidden variables, was apparently
first utilized in thermodynamics by Onsager [4,5], and numerous applications
have been recorded in the literature over the last forty years [2,6-14]. A
general framework for an ISV formulation of a thermoviscoplastic constitutive
mode1l can be developed by following the thermodynamic approach described by'
Coleman and Gurtin [2). Historically, attempts to model rate dependence begaé
with extensions of rate-independent classical plasticity theory. In these
attempts the inelastic strain was "uncoupled" into rate-independent plastic

and rate-dependent creep components to obtain

i P Cc T
95 = Dijks (ke ™ Ske ™ kg ™ ko) (1)

where the superscripts P, C, and T refer to the plastic, creep and temperature
components of strain, respectively. Ultimately, these attempts failed due to
the fact that rate-independent and rate-dependent inelastic deformations are
caused by the same microphysical mechanism, predominately dislocation
movement. Whereas plasticity 1is controlled by dislocation glide,

viscoplasticity is driven by thermally assisted diffusion in the form of



dislocation climb and cross-slip, which may in turn contribute to further
dislocation glide. Thus, a more salient approach evolved using an approach in
which the plastic strain and creep strain are "unified" into a single
inelastic strain, Eiz‘ The general form of the model for a metal is thus

described by the following stress-strain equation of state:

) 1T
%55 = Dijkaleke = kg = €ky) (2)

Although the total elastic strain, L and the thermal strain, elz’ are
normally specifiable, the inelastic strain tensor, representing a locally
averaged measure of the distance traversed by dislocations, is not.
Therefore, equation (2) must be augmented by an ISV evolution law (also

sometimes called the flow law) of the form:

ezJ = (U;j - a31'j) (3)

where % is a complicated history dependent function of state. For example,
the Prandt1-Reuss equ.- ‘ons [15,16] utilized in rate independent applications
may be obtained as a special case by differentiating (2) in time, substituting
(3) into this result, and setting “éij to zero.

For rate dependent circumstances, however, the equations must be further
augmented by additional ISV evolution laws to account for the diffusive nature

of dislocation mechanisms at elevated temperatures. These are of the form:
&2 = hy (e T “En - vy (e T “tz) (4)

. _ 1] u
031.] = h3 (ekl' T, akl) - Y'3 (ekl’ T’ akl) (5)




where the drag stress, ns is an ISV related to the number or density of
dislocations and the backstress, %345 is an ISV related to the residual
stresses at the microstructural 1level produced by the dislocation
arrangement. The functions h, and h3 represent the hardening terms in the
drag stress and backstress, respectively, due to 1loss of dislocation
mobility. The functions ro and rj represent the recovery terms in the drag
stress and backstress, respectively, due to recovery of dislocation
mobility. In some applications it may be necessary to append an additional
internal variable, %45 called a damage parameter and representing the
effects of grain boundary sliding and microfracture [17-20].

The mathematical expressions for the ISV's and the flow rule, equations 3
through 5, are typically determined phenomelogically by curve fitting data
obtained from a prescribed set of complicated experiments to this form. The
precise experiments required to obtain the models depend on the theory being
utilized. However, these experiments are typically complex in nature [21-
23]. Since they are normally performed at temperatures in excess of 1000°F,
they require the use of sophisticated test apparatus such as that shown in
Fig. 1. In addition, many of the models require that cyclic tension-
compression tests be performed to obtain data such as shown in Fig. 2, so that
a highly aligned testing machine and support fixtures are required in order to

avoid buckling of the specimens.

REVIEW OF CURRENT MODELS
In this section several of the more prominent unified models will be
reviewed; because the uncoupled models possess limited modelling ability, they
will not be covered. The first concerted attempt to model the inelastic

strain rate in a rate-dependent framework appears to have been due to Bodner



and co-workers [17,18,24-36]*, and an indication of the complexity of this
problem is that they are still actively pursuing this model. Since 1975, there
has been a veritable explosion of models such as Hart [36,37], Miller and co-
workers [19,38-48], Valanis [49,50], Robinson [51-57], Walker and co-workers
[20,32,35,36,58,59,60], Krempl and co-workers [61-66], Krieg and co-workers
[36,67], as well as others [68-78]. Doubtless there are numerous efforts we
have overlooked, and the authors apologize for any oversight on our part.

In a paper of this limited scope it is unrealistic to expect that an in-
depth review can be provided for each of the models. Therefore, we have
chosen what we hope is a reasonable and expedient dissemination method.
First, we will discuss each of the models briefly, and we have encapsulated a
summary of each of the models mentioned above (in uniaxial form) in Table I.
Because many of the models have appeared in several forms, in this table we
have chosen a relatively simple version of each of the models. Second, we
have summarized the capabilities of the models in Table II, and reviewed the
experimental requirements in Table III. Finally, we will discuss recent
advances and review in somewhat greater detail the models of Bodner, Miller,
and Walker.

Because the scope of this paper is limited, we are unable to pursue all
of the important issues regarding this subject. Readers who are interested in
further study on this subject will find a far more detailed discussion of
recent advances 1in viscoplasticity in reference 36, as well as in the

bibliography at the end of this paper.

*A1though a promising model proposed by Valanis had been previously reported,

it was rate-independent at the time of Bodner's work.




In this discussion the models are reviewed only in uniaxial form because
in virtually all cases they are converted to multiaxial form by using J2
theory or in conjunction with Drucker's postulate [79]. We should also point
out that we have used a common terminology since each author uses different
notation.

Probably the simplest model to date was proposed by Krempl and co-workers
[61-66]. Because this model does not contain evolution laws for the back
stress and drag stress, it is best used for monotonic loadings.

The model proposed by Valanis [49,50] is built on a single integral
framework which makes it quite different in form from equations (2) and (3).
However, as pointed out by Schapery [80], when this so-called "endochronic"
theory is used with an exponential kernel function, the Prandt1-Reuss [15,16]
equations can be recovered. Although Valanis' model 1is actually capable of
producing much more general results, a single exponential is usually used, so
that it reduces to equations (2) and (3) in the endochronic time scale after a
Laptacian transformation.

An interesting and potentially very useful model has been proposed by
Krieg, et al. [67]. The model appears to have been one of the first to include
both drag stress and back stress terms. However, the authors moved on to
other things and the model was not improved for about a decade. Recently, a
second generation of the model has been proposed [36].

Robinson [51-57] has proposed one of the most complex and advanced models
to date. His model is distinguished from the other current models both in
that it possesses a yield criterion similar to that used in classical
plasticity, and that it has been proposed in multiaxial form for orthotropic
media such as metal-matrix composites.

Hart's model [37] is distinguished by the fact that the drag stress is



assumed to be a constant, and it possesses an ISV called hardness which
affects the back stress evolution law. Recent advances in this model have

also been reported in reference 36.

Bodner's Model

As mentioned earlier, Bodner's model [17,18,24-36] appears to have been
the first viable unified model proposed for viscoplastic metals. Although
early versions of the model were somewhat primitive, it has remained at the
forefront of technology via timely modifications. The initial model did not
contain a back stress, 375 and although the current version does include
one, it is included in a significantly different way from other current
models. Bodner calls a, the isotropic hardening variable, and %34 j the
directional hardening tensor. He interprets a, as the nonrecoverable and
isotropic (scalar) resistance to plastic flow due to the microstructural
stress fields associated with dislocation density, whereas 345 is regarded
as the potentially recoverable part of the resistance to plastic flow that can

be caused by changes in stress direction (tensorial). The resulting evolution

laws are:
I 7% D, exp (- % |§|2n) sgn o (6)
Zza, +agsgno (7)
dp = my 12y - ayl b - A7) (0‘2—;1—2-2-1‘rl (8)
Gy = my [2y 590 0 - agl B - Ay 2 [J;—illrz Sgn o (9a)
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m, = ﬁg—(l + exp {-Mjaz sgn (o)} (9b)
2
where Dy, n, my, 2y, Iy, A}, Ty, ﬁz, my, I3, Ay, m3, and r, are material
constants, and Qp = oéI.
The flow law is exponentially based as seen in equation (6). The model
gives a limiting strain rate in shear of DO. The term -m;a, Wp is a dynamic
recovery term for a, in  the isotropic growth law (8) and
- A1 Z1 [(a2 - 22) Zillrl is a static thermal recovery term. ag is a
uniaxial representation of a second order tensor in the multiaxial state which
models directional hardening. Equation (7) shows that Z can experience large
changes in magnitude due to the sgn ¢ function as the stress changes sign.
The evolution law for aq has the same components as the evolution law for D.
Bodner's model is seen to use the rate of plastic work, Wp, instead of
inelastic strain rate as the measure of work hardening. This is designed to
allow for better modelling of strain rate jump tests. The modification used
to account for the strain aging effects was patterned after Schmidt and
Miller's solute strengthening correction [43,45]. The constant Z3 in
the ag evolution law was written in the following form:
+ 758 () (10)

I, =1

3 4

1
F(el) = F exp (- (fealle )= Teald)y2, (11)

where F is the maximum correction, J is the strain rate of maximum correction,

and g is the width of correction.
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Miller's Model

Miller's model [19,36,39-48] is probably the most complex model available
at the time of this writing. It is capable of accounting for a wide range of
physical phenomena, including solute strengthening and cyclic strain
softening.

Schmidt and Miller's evolution laws have the following form:

1 . @3 1.5.n
e =B' {siph (——=—)"""}" sgn (o - a,) (12)
a + Foor 3

ay = Hy 1o HiB' (sinh (A lagl )" sgn (ay) (13)
: -1 A, , 3..n
ay = Hy []e [(C, + Jag] - A ag) - Hy C, B' (sinh (A, a3)) (14)

-1
_ Tog (le™]) - Tog (J)\2
Feor = F exp { - ( . )%} (15)

where B', n, Hy, Ays Hpy €y, Ay, F, J, and 8 are material constants. Feo1 1S
the noninteractive solute strengthening correction parameter.

The flow law has the form of a hyperbolic sine. This form was chosen to
model creep response better. The same form is found in the static thermal
recovery terms of the backstress and drag stress evolution laws. The drag
stress hardening term contains a hardening term, a dynamic recovery term, and
a term which couples drag stress hardening to backstress magnitude. These
three terms provide the proper cyclic, hardening, softening and saturation

behavior.

Walker's Exponential Model

The growth laws for Walker's model [20,32,35,36,58,59,60] have the

12




following form:

I sqn (o - ay) (16)

- B Ung + ny exp (-ngliog LI R+ my  (a7)

Ro

&3 =n,

ag = Dy + D, exp (-n, R) (18)

R = 1] (19)
where 8, Ny Ngs Nys Ng, éo’ Ngs Dl’ DZ’ and n, are material constants.

This version of Walker's flow law is based on an exponential function.
The term n, éI js a work hardening term in the back stress growth law. The
term ay [ny + n, exp(—n5|1og(|ﬁ|/R0|)|l é ijs a dynamic recovery term.
Negative strain rate sensitivity effects can be modelled with the
term n, exp (-nsllog(lél/éo)l). Back stress thermal recovery is handled by
the ay Ng term. Drag stress hardening is modelled through the D, exp (-ny R)

term. No provision is made for drag stress recovery in this model.

COMPARISON OF MODEL PREDICTIONS TO EXPERIMENTAL RESULTS
In most cases, the models are described by a set of ordinary differential
equations in time which are mathematically "stiff". The definition of
mathematical stiffness is that if the solution is expanded in an exponential
series in time, at least two of the eigenvalues will differ by many orders of
magnitude [81]. A characteristic of stiff differential equations is that they
cannot be accurately integrated in time by standard integration schemes such

as Runge-Kutta methods. Numerous intricate algorithms have been deveioped for

13



integrating equations (3) through (5) in time [82-87]. It is often most
efficient to use a simple Euler forward or backward time marching integration
scheme, where accuracy is achieved by taking very small time steps, as shown
in Fig. 3 [82]. When solving boundary value problems using the finite element
method, it is normally possible to obtain convergence on each displacement
increment by subincrementing the Euler integration at each integration point.
Many of the models mentioned in the previous section have been compared
both qualitatively and quantitatively to one another as well as to
experimental results for a variety of materials [88-93]. The accuracy of
several of the models is demonstrated for INCONEL 718 under two constant
strain rate conditions at 1100°F (593°C) in Figs. 4 and 5 [93]. A complex
load history is demonstrated in Figs. 6 through 8 [93]. In this example
INCONEL 718 is subjected to the strain history shown at the bottom right hand

corner of each figure [93].

CONCLUSION
The complex task of predicting the response of viscoplastic metals has
now reached a state where reliable structural analysis is sometimes possible
[94]. However, the accuracy of predictions still depends on a number of
complicated factors such as material type, loading conditions, thermal
environment, numerical accuracy, and the constitutive model being utilized.
Although this area of research has produced results, it has not yet reached a

high degree of maturity.
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TABLE III. REQUIRED MATERIAL PARAMETER CHARACTERIZATION

Cernocky and Krempl Constant Strain Rate Tensile Tests
with Intermittent Hold Times Relaxations Tests

Krieg, Swearengen, and Rohde Stress Drop Tests
Constant Strain Rate Tensile Tests

Bodner et al. Constant Strain Rate Tensile Tests*
Creep Tests

Walker Constant Strain Rate Cyclic Tests
Constant Strain Rate Tensile Tests

Miller Creep Tests
Constant Strain Rate Cyclic Tests
Constant Strain Rate Tensile Test

Hart Relaxation Tests
Robinson Stress Drop Tests
Valanis Constant Strain Rate Tensile Test*

*Represents Simplest Form of the Model
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Fig. 1. Inconel 100 Speciman Tested at 1100°F in MTS-810 110 Kip Load
Frame with MTS Quartz Rod Diametral Extensometer and Lepel
Induction Heating Furnace
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Fig. 2 Cyclic Hysteresis Loop With Hold Times
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Fig. 4. Model Response for Inconel 718 at 1100°F at Constant Strain
Rate e = 3.15 x 10'3/sec (Courtesy American Society of
Mechanical Engineers)
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Fig. 5 Model Response for Inconel 718 at 1100°F at Constant
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Fig. 6 Model Prediction Versus Experiment for the Complex Strain
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Fig. 7 Model Prediction Versus Experiment for the Complex Strain
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